Scott Chapman

Education 1987–1992	 UNIVERSITY OF CALIFORNIA Ph.D. in theoretical high energy nuclear physics. Outstanding teaching award while head physics tea 	Berkeley, CA	
1981–1985	YALE UNIVERSITY ■ B.S. in physics, cum laude with distinction in the ma	New Haven, CT jor.	
Experience 2011-present	CHAPMAN UNIVERSITY Trustee professor of physics	Orange, CA	
1994-1996	 LOS ALAMOS LAB Los Alamos, NM Postdoctoral work in theoretical nuclear physics. Created new approach to measuring quark-gluon plasma formation. Simulated relativistic heavy-ion collisions on supercomputer. 		
1993-1994	 UNIVERSITY OF REGENSBURG Regensburg, Germany Postdoctoral work in theoretical nuclear physics. Predicted new phenomenon that was later confirmed experimentally. Managed research and focus of graduate students. 		
Publications			
2021	A twist on broken U(3)× U(3) supersymmetry, S. Chapman, Quantum Studies: Mathematics and Foundations, 8(1), 121-135, 2021.		
2017	Perturbative Yang-Mills Ground State in the Temporal Gauge, S. Chapman, Quantum Studies: Mathematics and Foundations, 4(3), 217-223, 2017.		
1996	Realistic Expanding Source Model for Invariant One-Particle Multiplicity Distributions and Two-Particle Correlations in Relativistic Heavy-Ion Collisions, S. Chapman and J. R. Nix, Phys.Rev.C54: 866-881, 1996. 27 Citations		
1995	Extracting Source Parameters from Gaussian Fits to Two-Particle Correlations, S. Chapman, J. R. Nix, and U. Heinz, Phys.Rev.C52: 2694-2703, 1995. 63 Citations		

The "Out-Longitudinal" Cross Term and Other Model Independent Features of the Two-Particle HBT Correlation Function,

S. Chapman, P. Scotto, and U. Heinz, Nucl.Phys.A590:449c-452c, 1995. 8 Citations

Model Independent Features of the Two-Particle Correlation Function, S. Chapman, P. Scotto, and U. Heinz, Heavy Ion Phys.1:1-31, 1995. 86 Citations

A new cross term in the two-particle Hanbury-Brown-Twiss correlation function, S. Chapman, P. Scotto, and U. Heinz, Phys.Rev.Lett.74:4400-4403, 1995. 121 Citations

1994 HBT Correlators – Current Formalism vs. Wigner Function Formulation,

S. Chapman and U. Heinz, Phys. Lett.B340:250-253, 1994.

64 Citations

A New Dimensionally Reduced Effective Action for QCD at High Temperature,

S. Chapman, Phys.Rev.D50:5308-5313, 1994.

24 Citations

1992 Nuclear transparency in 15-A-GeV Si + Au reactions?,

S. Chapman, Nucl. Phys. A544: 429C-433C, 1992.

Nuclear stopping power at approximately 15-GeV/nucleon,

S. Chapman and M. Gyulassy Phys.Rev.C45:2952-2962, 1992.

2 Citations

The Effective action for SU(N) at finite temperature,

S. Chapman, Phys.Rev.C47:1763-1780, 1993.

5 Citations

1991 Nuclear transparency in 15-A-GeV Si + Au reactions?,

S. Chapman and M. Gyulassy, Phys.Rev.Lett.67:1210-1213, 1991.

14 Citations