In Search of Liquidity Risk in Bank Stock Returns

Yasser Boualam (UNC) Anna Cororaton (SMU)

4th Chapman Conference on Money and Finance September 2019

Motivation

- · Liquidity transformation is inherent to banks' business model
 - Making long-term/illiquid loans against short-term/liquid liabilities
 - · Providing on-demand liquidity
- This exposes them to financial fragility and potential distress as highlighted by the recent financial crisis
 - Strong reliance on wholesale short term funding pre-crisis
 - Run on repo markets + credit line drawdowns
- Call for new regulation to address this liquidity risk
 - Liquidity Coverage Ratio (LCR), Net Stable Funding Ratio (NSFR)

Motivation

- · Liquidity transformation is inherent to banks' business model
 - Making long-term/illiquid loans against short-term/liquid liabilities
 - Providing on-demand liquidity
- This exposes them to financial fragility and potential distress as highlighted by the recent financial crisis
 - Strong reliance on wholesale short term funding pre-crisis
 - Run on repo markets + credit line drawdowns
- Call for new regulation to address this liquidity risk
 - Liquidity Coverage Ratio (LCR), Net Stable Funding Ratio (NSFR)
- "Little is known about how one should regulate bank liquidity" Allen-Gale (2017)
- We argue that we know even less about how market participants perceive liquidity risk embedded in banks

This Paper

 Takes an empirical asset-pricing approach to explore the market's assessment of liquidity risk

Research question

- How does liquidity mismatch on banks balance sheets affect their (risk-adjusted) stock returns?
- Is liquidity mismatch a source of risk driving returns in the financial sector?

Relevance

- Document novel and robust facts about bank stock returns
 - Liquidity mismatch vs. risk premia
- Policy implications
 - Effect of liquidity regulation (i.e., reducing liquidity mismatch) impact banks' cost of capital?

- Banks with highest liquidity mismatch command <u>lower</u> (risk-adjusted) returns
 - Long-short portfolio delivers alpha of 6 percent annually

- Banks with highest liquidity mismatch command <u>lower</u> (risk-adjusted) returns
 - Long-short portfolio delivers alpha of 6 percent annually
- Results are overall robust to:
 - Asset pricing specifications: FF3, FF5, bond risk factors, market liquidity factor, financial size factor
 - Weighting scheme
 - Bank characteristics: e.g., size, profitability, bank risk proxies (leverage, asset quality, tail risk)
 - Measures of liquidity mismatch in progress

- Rule in/out some potential explanations
 - Endogenous sorting? Unlikely
 - Mispricing due to the under-estimation/mis-measurement of liquidity risk pre-crisis – Yes

- Rule in/out some potential explanations
 - Endogenous sorting? Unlikely
 - Mispricing due to the under-estimation/mis-measurement of liquidity risk pre-crisis – Yes
- Potential policy implications
 - Liquidity mismatch may not fully account for liquidity risk
 - Newly implemented regulation may potentially have counter-productive effects: this may increase the cost of equity for banks, all else equal, but without necessarily tackling the real source of liquidity risk and financial fragility

Related Literature Cross-Section of Bank Stock Returns

- Financial stocks have been traditionally overlooked in the empirical asset pricing literature with a few recent exceptions including:
 - Gandhi-Lustig (2015): size
 - Adrian et.al. (2016): financial-specific factors
 - Baker-Wurgler (2014), Bouwman et.al. (2017): beta, capital

Banking Data

- **Y-9C reports** (quarterly, 1991 Q1 to 2016 Q4)
 - Consolidated financial statements at the bank holding company level
 - Includes balance sheet, income statement, detailed supporting schedules, off balance-sheet items
 - Reporting requirements: >150 fm (up to Mar 2006), >500 fm (up to Mar 2015), >1 fm (now)
- Call reports (quarterly, 1991 Q1 to 2016 Q4)
 - Consolidated Reports of Condition and Income
 - Provide more granular information, at the bank level
 - Reporting requirement for every national bank, state member bank, insured state nonmember bank, and savings association
- CRSP stock returns (monthly) / COMPUSTAT
 - The Federal Reserve maintains a table linking CRSP's PERMNOs to Y-9C's RSSD9001

Banking Data

- Focus on commercial banks
 - 3-digit header SIC code: 602, 671
- Standard filters:
 - Consumer loans > 50 %
 - Non-standard BHC's
 - e.g., Metlife, Goldman Sachs, Morgan Stanley, American Express, Discover
 - Penny stocks
- ullet \sim 300 banks per year
 - Average bank: 25 \$bn in total assets, 3 \$bn market capitalization

Measuring Liquidity Many definitions

- Traditional measures: Short-term wholesale funding, Maturity gap
 - Incomplete?
- Regulatory measures: LCR, NSFR
 - Liquidity Coverage Ratio: requires holding sufficient liquid assets to withstand severe funding outflows over the next 30 days
 - Net Stable Funding Ratio: ratio of LT stable funding over LT assets
 - Too complex?
- "Academic" measures:
 - Berger-Bouwman (2009): fixed weights
 - Bai et.al. (2018) Liquidity Mismatch Index: time-varying weights depending on market and funding liquidity, short sample period, relies on confidential information
- We develop a simple measure of liquidity mismatch:
 Liquidity Gap (LG) ratio

Measuring Liquidity

We develop a simple measure of liquidity mismatch:
 Liquidity Gap (LG) ratio

$$LG = \frac{\text{Volatile Liabilities} - \text{Liquid Assets}}{\text{Total Liabilities}}$$

- Captures a bank's ability to immediately service severe outflows from the liabilities that are more prone to withdrawals
- Simplified version of the LCR based on Berger-Bouwman (2009) asset/liability categories

Measuring Liquidity

We develop a simple measure of liquidity mismatch:
 Liquidity Gap (LG) ratio

$$\textit{LG} = \frac{\text{Volatile Liabilities} - \text{Liquid Assets}}{\text{Total Liabilities}}$$

- Captures a bank's ability to immediately service severe outflows from the liabilities that are more prone to withdrawals
- Simplified version of the LCR based on Berger-Bouwman (2009) asset/liability categories
- ullet Volatile Liabilities > Liquid Assets \to LG >0, high liquidity mismatch
- ullet Volatile Liabilities < Liquid Assets ightarrow LG <0, low liquidity mismatch

Measuring Liquidity Risk

- Liquid Assets
 - Cash and balances due from other institutions
 - All securities and trading assets
 - Federal funds sold and securities purchased under agreements to resell

Measuring Liquidity Risk

- Liquid Assets
 - Cash and balances due from other institutions
 - All securities and trading assets
 - Federal funds sold and securities purchased under agreements to resell
- Volatile liabilities are calculated based on our sample
 - For each type of liability, we calculate the time series volatility of their flow rates at the bank level, then average them out
 - Rank the different types of liabilities

Measuring Liquidity Risk

- Liquid Assets
 - Cash and balances due from other institutions
 - All securities and trading assets
 - Federal funds sold and securities purchased under agreements to resell
- Volatile liabilities are calculated based on our sample
 - For each type of liability, we calculate the time series volatility of their flow rates at the bank level, then average them out
 - Rank the different types of liabilities
- The top 4 liabilities are stable across the whole sample period
- Computing volatility of outflows only generates the same result

Volatile Liabilities

Item	Std Dev	Mean	VW Share
Trading Liabilities	0.616	0.126	0.044
Other Borrowed Money	0.556	0.101	0.119
Deposits, Foreign	0.537	0.100	0.111
Federal Funds Purchased and Repos	0.516	0.074	0.084
Volatile Liabilities	0.439	0.106	0.327
Other Liabilities	0.414	0.083	0.054
Subordinated Notes and Debentures	0.256	0.052	0.024
Non-interest Bearing Deposits, Domestic	0.204	0.095	0.125
Equity	0.150	0.080	0.103
Interest Bearing Deposits, Domestic	0.127	0.071	0.369
Non-volatile Liabilities and Equity	0.112	0.076	0.673

Liquidity Gap Distribution over Time

Liquidity Gap % of Banks with Positive Liquidity Gap

Liquidity Gap Properties Aggregate Liquidity Gap (\$bn)

Extending the Sample with COMPUSTAT

- LG is computed based on Y9-C data from 1991-2016
- We project LG using COMPUSTAT data and extend the sample back to 1974
 - 7 accounting variables including short-term, long-term debt, equity, cash can explain over 90% of LG variation

Portfolio Sorts & Factor Regressions

- Baseline sample
 - Period: 1974 2016
 - $\bullet \sim 155,000$ BHC-month return observations
 - 1,092 unique BHC's, with \sim 300 per year
- We follow Fama and French (1993)
 - Sort stocks and form portfolios from January December of year t using LG in December of year t-1
 - Rebalance annually
 - Analyze monthly excess returns for liquidity-gap-sorted portfolios
- We run linear factor regressions $r_{p,t+1}^e = \alpha_p + \beta_p' f_{t+1} + \epsilon_{p,t+1}$
 - $r_{p,t+1}^e$: monthly excess returns
 - f_{t+1} : risk factors
 - β_p : loadings on the factors

Portfolio Sorts & Factor Regressions Model specifications

- Raw excess returns
- CAPM
- Fama-French 3-factor model
- Baseline 8-factor model

```
f_t = [market \ smb \ hml \ rmw \ cma \ ltg \ crd \ ps]
```

- Fama-French 5 factors
- Bond risk factors: long-term interest rate risk (ltg), credit risk (crd)
- Pastor-Stambaugh liquidity factor (ps)

Alphas VW - Sample Period: 1974 - 2016

	Low	(2)	(3)	(4)	High	Low-High			
Panel A. Alphas									
Excess Returns	0.096*** (3.29)	0.089*** (2.99)	0.086*** (2.61)	0.081** (2.46)	0.063 (1.60)	0.033 (1.61)			
CAPM alpha	0.037*	0.033	0.021 (0.95)	0.013	-0.017 (-0.67)	0.055***			
3-factor alpha	0.004 (0.25)	-0.004	-0.024	-0.028	-0.069*** (-3.54)	0.073***			
8-factor alpha	0.23) 0.017 (0.91)	(-0.21) -0.001 (-0.04)	(-1.33) -0.009 (-0.42)	(-1.22) -0.018 (-0.77)	-0.043** (-2.17)	(3.73) 0.060*** (2.93)			
N	516	516	516	516	516	5			

t statistics in parentheses

• Results also hold for equal-weighted and decile portfolios

^{*} p<0.10, ** p<0.05, *** p<0.01

Controlling for Bank Characteristics

Can bank characteristics correlated with LG explain these results?

Portfolio	Lo	2	3	4	Hi	Mean	Std Dev
Liquidity Gap	-0.37	-0.25	-0.19	-0.13	-0.02	-0.19	0.16
Assets, Bil. \$	4.16	8.15	14.04	23.11	73.51	24.60	149.98
Return on Assets, %	3.44	3.00	2.60	2.60	2.40	2.80	7.60
Equity/Assets, %	9.72	9.63	9.38	9.27	9.00	9.40	2.41
Charge-offs/TA, %	0.33	0.47	0.55	0.58	0.68	0.52	0.96

Controlling for Bank Characteristics Double Sorts

- Size effect Gandhi-Lustig (2015)
- Profitability ROA
- Risk Substitution
 - Leverage equity/assets Bouwman et.al.(2017)
 - Asset quality charge-offs
 - Risk management tail risk

Controlling for Bank Characteristics Size Effect?

- Gandhi-Lustig (2015) show that large banks earn a significantly low return relative to smaller banks even though they are highly levered and connect it to a TBTF subsidy
- We test the robustness of our results to size effects
 - Augment our baseline model with a financial-specific size factor
 - Double sort
 - Control for size in cross-sectional regressions

Controlling for Bank Characteristics Size Effect?

	(1)	(2)	(3)	(4)	(5)	(6)
Alpha	0.028	0.008	0.008	0.007	-0.018	0.045**
	(1.44)	(0.40)	(0.41)	(0.33)	(-0.90)	(2.28)
β^{M}	0.701***	0.728***	0.716***	0.702***	0.868***	-0.167***
	(15.87)	(14.06)	(13.98)	(10.15)	(14.19)	(-3.01)
$\beta^{\it smb}$	0.311***	0.383***	0.355***	0.308***	0.274***	0.038
	(4.64)	(6.21)	(6.05)	(3.58)	(3.70)	(0.52)
β^{hml}	0.516***	0.661***	0.801***	0.733***	1.022***	-0.506***
	(5.62)	(9.21)	(11.37)	(7.55)	(10.79)	(-3.97)
$\beta^{\it rmw}$	-0.000	0.002***	0.001*	0.004***	0.001	-0.001
	(-0.06)	(3.33)	(1.65)	(3.57)	(1.41)	(-1.44)
β^{cma}	-0.001	-0.002**	-0.002**	-0.001	-0.004**	0.003
	(-0.56)	(-1.99)	(-2.11)	(-1.04)	(-2.39)	(1.51)
β^{ltg}	-0.040	0.103	-0.005	0.079	0.129	-0.170
	(-0.35)	(1.00)	(-0.06)	(0.65)	(1.10)	(-1.06)
β^{crd}	0.035	-0.049	0.144	0.036	0.016	0.018
	(0.21)	(-0.30)	(0.90)	(0.19)	(0.09)	(0.09)
$\beta^{\it ps}$	-0.036	-0.104**	-0.149***	-0.191***	-0.169***	0.132**
	(-0.92)	(-2.30)	(-2.70)	(-3.19)	(-2.72)	(1.99)
$\beta^{smb^{fin}}$	-0.262***	-0.212***	-0.403***	-0.614***	-0.611***	0.348***
	(-4.28)	(-3.77)	(-7.64)	(-7.74)	(-9.78)	(4.76)

^{*} p<0.10, ** p<0.05, *** p<0.01

Controlling for Bank Characteristics Size Effect?

Portfolio	Low	(2)	(3)	(4)	High	Low-High				
	Panel A. Size (total assets)									
Small	0.025 (1.19)	0.001 (0.03)	-0.001 (-0.04)	-0.009 (-0.43)	-0.015 (-0.64)	0.040** (2.55)				
Medium	0.011 (0.61)	-0.014 (-0.68)	0.006 (0.31)	-0.019 (-0.92)	-0.036* (-1.72)	0.047*** (2.92)				
Big	0.004 (0.20)	-0.021 (-0.92)	-0.021 (-0.87)	-0.051** (-2.38)	-0.038* (-1.76)	0.042* (1.85)				
N	516	516	516	516	516	516				
* p<0.10,	** p<0.0!	5, *** p<0	.01							

Controlling for Bank Characteristics Profitability Effect?

Portfolio	Low	(2)	(3)	(4)	High	Low-High			
Profitability (return-on-assets)									
Low	0.046*	-0.016	-0.053*	0.003	-0.024	0.071**			
	(1.84)	(-0.65)	(-1.77)	(0.13)	(-0.74)	(1.98)			
Medium	0.010	-0.001	0.003	-0.018	-0.066***	0.076***			
	(0.50)	(-0.07)	(0.11)	(-0.72)	(-2.80)	(3.10)			
High	0.014	-0.011	-0.012	-0.018	-0.029	0.043*			
	(0.72)	(-0.46)	(-0.64)	(-0.79)	(-1.36)	(1.78)			

^{*} p<0.10, ** p<0.05, *** p<0.01

Controlling for Bank Characteristics Risk Substitution Effect?

Portfolio	Low	(2)	(3)	(4)	High	Low-High				
	Panel A. Leverage (total asset/common equity)									
Low	0.008	-0.010 (-0.50)	-0.037* (-1.72)	-0.018 (-1.00)	-0.024	0.032 (1.31)				
Medium	0.022	0.013	-0.010	-0.022	(-1.10) 0.007	0.015				
High	(0.97) 0.016	(0.56) -0.009 (-0.37)	(-0.40) -0.014	(-0.93) -0.054**	(0.33) -0.043	(0.66) 0.059*				
	(0.71)	, ,	(-0.49)	(-2.05) rge-offs over t	(-1.61)	(1.76)				
		Ü	`	J	,					
Low	0.026 (1.08)	-0.014 (-0.56)	-0.002 (-0.09)	-0.034 (-1.29)	-0.035 (-1.56)	0.061** (2.38)				
Medium	0.014	-0.006	-0.012	-ò.059**	-0.072***	0.085***				
High	(0.69) 0.023	(-0.28) -0.008	(-0.57) 0.009	(-2.48) -0.010	(-2.74) 0.000	(2.71) 0.023				
	(1.09)	(-0.36)	(0.40)	(-0.45)	(0.00)	(0.95)				
Ν	516	516	516	516	516	516				

^{*} p<0.10, ** p<0.05, *** p<0.01

Fama-Macbeth Regressions (1992 - 2016)

	(1)	(2)	(3)	(4)	(5)
Liquidity Gap	-0.094* (-1.89)	-0.067* (-1.75)	-0.063 (-1.61)	-0.076* (-1.95)	-0.068** (-2.06)
β^{M}		0.015 (0.32)	0.016 (0.34)	0.013 (0.29)	0.019 (0.44)
eta^{smb}		0.032	0.032 (1.36)	0.033	0.041*
β^{hml}		-0.009 (-0.31)	-0.009 (-0.29)	-0.009 (-0.32)	-0.001 (-0.04)
Size		(-0.31)	0.0478	0.0382	-0.0125 (-0.15)
Equity/Assets			(0.01)	-0.684** (-2.49)	-0.953 (-1.03)
Net Charge-offs				(- 7	-3.604** (-2.48)
Non-interest Income Share					0.000 (1.22)
Tail Risk					-1.274*** (-2.61)
ROA					-0.006 (-0.62)
Z-score					0.015***
B/M					0.240 (0.32)
Constant	0.115*** (2.75)	0.102*** (3.33)	0.101*** (3.22)	0.162*** (3.73)	-0.081 (-0.11)
R^2	1.14	13.61	14.40	15.41	21.30
Number of observations Number of periods	70722 288	70722 288	69242 288	69242 288	64143 288

More Robustness Tests

Results are also robust to:

- Alternative variants of liquidity gap
 - With/without off-balance sheet items
 - Expanded definition for volatile liabilities
- NSFR proxy

What Drives the Liquidity Risk Anomaly?

a. Liquidity Gap Components

	Low	(2)	(3)	(4)	High	Low-High			
Panel A. Alphas - Liquidity Gap									
3-factor alpha	0.040* (1.78)	0.006 (0.27)	-0.008 (-0.32)	-0.011 (-0.43)	-0.073*** (-2.95)	0.113*** (4.26)			
8-factor alpha	0.047** (1.98)	0.026 (1.04)	0.029 (0.98)	0.038 (1.25)	-0.015 (-0.60)	0.062** (2.53)			
	Panel B. Alphas - Volatile Liabilities / Total Liabilities								
3-factor alpha	0.023 (1.02)	0.018 (0.68)	0.003 (0.12)	-0.038 (-1.52)	-0.050** (-2.38)	0.073*** (3.74)			
8-factor alpha	0.035 (1.54)	0.031 (1.07)	0.021 (0.85)	-0.005 (-0.19)	0.011 (0.41)	0.024 (1.04)			
Pan	Panel C. Alphas - Liquid Assets / Total Liabilities (reverse order)								
3-factor alpha	-0.058**	-0.022	-0.029	0.000	-0.064*	0.005			
8-factor alpha	(-2.37) 0.022 (-0.69)	(-0.66) -0.021 (-0.55)	(-1.11) 0.005 (0.18)	(-0.01) 0.036 (-1.07)	(-1.93) -0.035 (-1.17)	(0.16) 0.057 (1.38)			
N	300	300	300	300	300	300			

t statistics in parentheses

^{*} p<0.10, ** p<0.05, *** p<0.01

What Drives the Liquidity Risk Anomaly?

b. Endogenous Sorting?

- Lower risk premia for banks that a priori appear to be more exposed to liquidity risk is counterintuitive
- This is reminiscent of the distress risk puzzle for non-financials
 - Campbell-Hilscher-Szilagyi (2008)

b. Endogenous Sorting?

- Lower risk premia for banks that a priori appear to be more exposed to liquidity risk is counterintuitive
- This is reminiscent of the distress risk puzzle for non-financials
 - Campbell-Hilscher-Szilagyi (2008)
- Endogenous sorting argument?
 - See Kashyap et.al. (2002), Gatev-Strahan (2009), Gatev et.al. (2009), Cornett et.al. (2011) on synergies between deposit taking and liquidity provision
 - Banks that appear safer from a liquidity mismatch perspective are in fact responding endogenously to a higher exposure to some systematic liquidity risk
 - Conversely, banks that take on more liquidity mismatch can have better access to liquidity in period of stress
 - Outside liquidity: equity issuance is less costly
 - Inside liquidity: higher interconnectedness/information, have faster access to trading markets, incur a lower fire sale discount
 - Better access to the lender of last resort

b. Endogenous Sorting?

 If this argument is true, we should see higher liquidity gap banks outperforming in crisis times

b. Endogenous Sorting?

- If this argument is true, we should see higher liquidity gap banks outperforming in crisis times
 - We find the opposite!

- $Corr(\alpha_{LS}, VIX) = 0.21***$
- Corr(α_{LS} , TED spread) = 0.19***

c. Mispricing? - Pre vs. Post Crisis

	Low	(2)	(3)	(4)	High	Low-High
		Panel A. Al	phas - 1974	- 1991		
Excess Returns	0.090*	0.072	0.070	0.027	0.025	0.064**
CAPM alpha	(1.89) 0.038	(1.42) 0.018	(1.33) 0.008	(0.48) -0.041	(0.39) -0.051	(2.19) 0.089***
3-factor alpha	(1.38) 0.009	(0.60) -0.017	(0.28) -0.032	(-1.27) -0.060*	(-1.45) -0.091***	(3.52) 0.101***
8-factor alpha	(0.36) 0.010 (0.35)	(-0.63) -0.020 (-1.09)	(-1.16) -0.009 (-0.33)	(-1.89) -0.046 (-1.13)	(-2.92) -0.076** (-2.25)	(3.82) 0.086*** (2.70)
N	216	216	216	216	216	216
		Panel B. Al	phas - 1992	- 2007		
Excess Returns	0.145***	0.121***	0.085*	0.123***	0.092**	0.053*
CAPM alpha	(4.00) 0.108***	(3.04) 0.083**	(1.96) 0.042 (1.03)	(3.31) 0.078**	(2.11) 0.026 (0.68)	(1.83) 0.082***
3-factor alpha	(2.95) 0.056* (1.84)	(2.11) 0.017 (0.69)	-0.023 (-0.76)	(2.12) 0.021 (0.71)	-0.036 (-1.27)	(2.87) 0.093*** (3.43)
8-factor alpha	0.039 (1.45)	0.011 (0.45)	-0.018 (-0.65)	0.017 (0.60)	-0.029 (-1.07)	0.068*** (2.76)
N	192	192	192	192	192	192

t statistics in parentheses

^{*} p<0.10, ** p<0.05, *** p<0.01

Mispricing? - Pre vs. Post Crisis

				_		
	Low	(2)	(3)	(4)	High	Low-High
		Panel C Al	phas - 2008	- 2009		
			p.id5 2000	2003		
Excess Returns	-0.003	-0.042	0.053	-0.179	-0.255	0.252
	(-0.02)	(-0.20)	(0.23)	(-0.64)	(-0.58)	(0.73)
CAPM alpha	0.054	0.041	0.137	-0.090	-0.102	0.156
•	(0.43)	(0.35)	(1.16)	(-0.49)	(-0.54)	(0.89)
3-factor alpha	0.016	0.055	0.139	-0.133	-0.062	0.078
•	(0.19)	(0.69)	(1.16)	(-1.53)	(-0.35)	(0.37)
8-factor alpha	-0.021	-0.028	0.263*	-0.167	0.021	-0.041
	(-0.15)	(-0.29)	(1.78)	(-0.97)	(0.16)	(-0.27)
N	24	24	24	24	24	24
		Panel D. Al	phas - 2010	- 2016		
			•			
Excess Returns	0.130**	0.139*	0.154*	0.156**	0.119	0.012
	(2.15)	(1.91)	(1.93)	(2.15)	(1.49)	(0.35)
CAPM alpha	-0.017	-0.026	-0.004	-0.016	-0.057	0.039
0.6	(-0.43)	(-0.47)	(-0.08)	(-0.32)	(-1.02)	(1.25)
3-factor alpha	0.001	-0.015	0.010	-0.006	-0.047	0.048
0.6	(0.03)	(-0.34)	(0.23)	(-0.17)	(-1.18)	(1.57)
8-factor alpha	0.047	0.051	0.085**	0.067*	0.017	0.029
	(1.58)	(1.18)	(2.17)	(1.78)	(0.48)	(1.03)
N	84	84	84	84	84	84

t statistics in parentheses

^{*} p<0.10, ** p<0.05, *** p<0.01

c. Mispricing? - Pre vs. Post Crisis

- · Sort by the complexity index, assigned by the Federal Reserve
 - Subjective measure {0,1}
 - Reflects material credit-extending activity, high-risk non-bank financial activities, complex management practices
- More complex banks tend to exhibit larger differences
- Consistent with bank opacity, mis-measurement of liquidity mismatch/mispricing of liquidity risk

Portfolio	Low	(2)	(3)	(4)	High	Low-High
		Co	omplexity			
Not Complex	0.068***	0.069** (2.57)	0.042 (1.54)	0.065*** (2.60)	0.028 (1.00)	0.040** (2.32)
Complex	0.043 (1.50)	0.052* (1.82)	0.017 (0.53)	0.019 (0.64)	-0.021 (-0.78)	0.064** (2.20)
N	288	288	288	288	288	288

t statistics in parentheses

^{*} p<0.10, ** p<0.05, *** p<0.01

Liquidity Risk in Other Contexts

• Should we expect similar patterns in other contexts?

Liquidity Risk in Other Contexts

- Should we expect similar patterns in other contexts?
 - Hedge funds?
 Barth-Monin (2018) Liquidity risk is priced and accounts for large portion of risk-adjusted returns
 - Non-financial institutions?
 Ortiz-Molina-Phillips (2014) Asset illiquidity increases cost of capital;
 - Gopalan-Song-Yerramili (2014) High rollover risk lead to lower credit quality

Conclusion

- We take an empirical asset-pricing approach to explore the market's assessment of liquidity risk
 - How does liquidity mismatch on banks balance sheets affect their (risk-adjusted) stock returns?
- We show that banks with higher liquidity gap have lower expected returns
 - Long-short portfolio delivers statistically significant risk-adjusted alpha of 6 percent annually
- Results are robust to several asset pricing specifications, controlling for key bank characteristics such as size, profitability, and risk proxies, etc..
- Potential explanations are most likely related to market's under-estimation and potential mis-measurement of liquidity risk, particularly for more complex banks pre-crisis

Motivation

- Liquidity Coverage Ratio
 - Requires banks to hold sufficient liquid assets on their balance sheets to withstand severe funding outflows over the next 30 days
- Net Stability Funding Ratio
 - Ratio of long-term stable funding over long-term assets

Motivation

- Liquidity Coverage Ratio
 - Requires banks to hold sufficient liquid assets on their balance sheets to withstand severe funding outflows over the next 30 days
- Net Stability Funding Ratio
 - Ratio of long-term stable funding over long-term assets

 "Little is known about how one should regulate bank liquidity" – Allen-Gale (2017)

Motivation

Liquidity Coverage Ratio

 Requires banks to hold sufficient liquid assets on their balance sheets to withstand severe funding outflows over the next 30 days

Net Stability Funding Ratio

Ratio of long-term stable funding over long-term assets

- "Little is known about how one should regulate bank liquidity" Allen-Gale (2017)
- We argue that we know even less about how market participants perceive liquidity risk embedded in banks

Related Literature Theory

- The link between banks' role as liquidity creators and financial fragility is at the core of banking theory
 - Bank runs
 Diamond-Dybvig (1983), Goldstein-Pauzner (2005)
 - Funding is excessively short-term Huang-Ratnovski (2011), Brunnermeier-Oehmke (2013), He-Milbradt (2016)

Related Literature Theory

- The link between banks' role as liquidity creators and financial fragility is at the core of banking theory
 - Bank runs
 Diamond-Dybvig (1983), Goldstein-Pauzner (2005)
 - Funding is excessively short-term
 Huang-Ratnovski (2011), Brunnermeier-Oehmke (2013), He-Milbradt
 (2016)
- The effect of liquidity mismatch on banks is ambiguous
 - Short-term debt as a disciplining device Calomiris-Khan (1991), Diamond-Rajan (2001)

Related Literature Empirical Evidence

- Gatev-Strahan (2009), Gatev et.al. (2009), Cornett et.al. (2011): synergies between deposit taking and liquidity provision
 - See Kashyap et.al. (2002)
 - Banks with higher exposure to credit line drawdowns (i.e., subject to illiquidity on asset side), typically receive high deposit inflows in crisis periods
 - ightarrow Banks with high exposure to liquidity demand shocks are not necessarily the most fragile ones
- Acharya-Mora (2015), on the other hand, argue that this liquidity hedging mechanism was not at play during the financial crisis, until the government stepped in

COMPUSTAT Extension

$$LG_{i,t} = \sum_{j=1}^{N} \beta_j x_{j,i,t}$$
 if year > 2000

- $LG_{i,t}$ is the liquidity risk for each bank i at time t, $x_{j,i,t}$ is the j^{th} explanatory variable where j = 1...N
- Conduct in-sample regression performance by comparing actual and predicted values for 1991-2000
- Assumption is that BHC's management of liquidity is the same before and after 1991

COMPUSTAT Extension

	(1)	(2)
	mismatch	mismatch
CEQTA	0.0723	0.0981
	(2.99)	(3.92)
CHTA	-0.596	-0.370
	(-19.21)	(-11.99)
DLCTA	1.332	1.252
	(118.46)	(104.33)
DLTTTA	1.160	1.070
	(102.66)	(82.06)
IVAOTA	-0.744	-0.518
	(-71.37)	(-42.29)
RECTTA	0.314	0.551
	(32.27)	(47.73)
SALETA	0.195	0.0260
	(5.04)	(0.68)
Constant	-0.367	-0.559
	(-38.71)	(-54.58)
N	5478	5478
R^2	0.909	0.876

t statistics in parentheses

CEQ= Common Ordinary Equity - Total; CH= Cash; DLC= Debt in Current Liabilities - Total; DLTT= Total; IVAO =Investment and Advances - Other; RECT=Receivables - Total; SALE= Sales Turnover (Net).

COMPUSTAT Extension

	(1)	(2)
	Actual	Actual
Predicted, OLS	1.018***	
	(129.29)	
Predicted, with FE		1.055***
		(121.88)
Constant	-0.00505**	0.00508**
	(-2.27)	(2.10)
N	2730	2730
R^2	0.860	0.845

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Other Double Sorts

Portfolio	Low	(2)	(3)	(4)	High	Low-High
			Tail risk			
Low	0.040*	-0.007	0.009	-0.014	-0.020	0.058***
	(1.93)	(-0.35)	(0.47)	(-0.58)	(-0.97)	(3.66)
Medium	-0.009	-0.009	-0.017	-0.036	-0.038	0.045**
	(-0.45)	(-0.40)	(-0.81)	(-1.40)	(-1.45)	(2.54)
High	0.003	-0.025	0.017	-0.039	-0.067**	0.068***
	(0.10)	(-0.95)	(0.55)	(-1.20)	(-2.56)	(2.95)
		Def	ault risk (z-	score)		
Low	0.009	0.041	0.021	-0.005	0.018	0.043
	(0.27)	(1.25)	(0.61)	(-0.11)	(0.44)	(1.41)
Medium	0.029	0.044	0.043	-0.022	-0.021	0.039**
	(1.07)	(1.34)	(1.16)	(-0.63)	(-0.59)	(1.99)
High	0.042	0.013	0.024	0.035	0.025	0.037*
	(1.59)	(0.53)	(0.75)	(1.09)	(0.78)	(1.82)
		Non-i	nterest inco	me share		
Low	0.027	-0.008	0.028	-0.005	0.024	0.036*
	(0.88)	(-0.22)	(0.81)	(-0.16)	(0.55)	(1.71)
Medium	0.032	0.002	0.020	-0.014	-0.005	0.041*
	(1.17)	(0.07)	(0.66)	(-0.40)	(-0.13)	(1.88)
High	0.037	0.026	0.026	0.050	0.014	0.035*
Ü	(1.24)	(0.91)	(0.99)	(1.17)	(0.54)	(1.85)
-						

^{*} p<0.10, ** p<0.05, *** p<0.01

More Robustness

Low	(2)	(3)	(4)	High	Low-High			
Pan	el A. Use I	Measure w	ith Off Ba	lance Shee	t Items			
0.025	0.013	-0.005	-0.008	-0.025	0.050			
(1.36)	(0.64)	(-0.20)	(-0.31)	(-1.08)	(3.11)			
	Panel B. Expanded Volatile Liabilities							
0.016	0.021	0.005	0.000	-0.031	0.047			
(0.83)	(1.03)	(0.24)	(0.01)	(-1.46)	(2.94)			
Panel C.	Sample p	eriod exclu	ding finan	cial crisis ([1974-2007]			
0.032	0.017	0.000	0.017	-0.022	0.054			
(1.55)	(0.79)	(0.00)	(0.73)	(-0.91)	(3.05)			
	Panel	D. Using	ex-dividen	d returns				
-0.012	-0.034	-0.039	-0.034	-0.084	0.073			
(-0.63)	(-1.78)	(-1.92)	(-1.64)	(-3.81)	(4.17)			

Cumulative Returns - LS portfolio Sample Period: 1974-2016

Factor Loadings Sample Period: 1974 - 2016

	Low	(2)	(3)	(4)	High	Low-High
β^M	Panel D. 5-F 0.880*** (18.88)	actor Fama-Fr 0.873*** (24.26)	ench + ltg + o 0.992*** (24.52)	crd + ps (regre 1.122*** (17.06)	ession coefficie 1.286*** (20.25)	-0.406*** (-7.06)
β^{smb}	0.164**	0.264***	0.129**	-0.036	-0.069	0.233***
	(2.53)	(4.94)	(2.25)	(-0.36)	(-0.87)	(3.12)
β^{hml}	0.619***	0.744***	0.958***	0.974***	1.261***	-0.642***
	(7.29)	(9.61)	(9.99)	(7.84)	(9.05)	(-4.21)
β^{rmw}	-0.001	0.002***	0.000	0.002**	-0.000	-0.001
	(-0.85)	(2.66)	(0.43)	(2.39)	(-0.02)	(-0.64)
β^{cma}	-0.002	-0.003***	-0.004***	-0.004**	-0.006***	0.004**
	(-1.26)	(-2.60)	(-2.71)	(-2.19)	(-3.42)	(2.23)
β^{ltg}	0.011	0.145	0.075	0.200	0.250*	-0.238
	(0.09)	(1.31)	(0.79)	(1.31)	(1.75)	(-1.50)
$eta^{\it crd}$	-0.070	-0.134	-0.017	-0.210	-0.228	0.158
	(-0.41)	(-0.76)	(-0.09)	(-0.88)	(-0.95)	(0.69)
β^{ps}	-0.054	-0.118**	-0.177***	-0.233***	-0.210**	0.156**
	(-1.23)	(-2.29)	(-2.61)	(-2.78)	(-2.49)	(2.00)

t statistics in parentheses

^{*} p<0.10, ** p<0.05, *** p<0.01

Factor Loadings Sample Period: 1974-2016

	Low	(2)	(3)	(4)	High	Low-High
β^{M}	Panel D. 5-F	Factor Fama-Fr	ench + ltg + o	crd + ps (regre	ssion coefficien	ots)
	0.880***	0.873***	0.992***	1.122***	1.286***	-0.406***
	(18.88)	(24.26)	(24.52)	(17.06)	(20.25)	(-7.06)
eta^{smb}	0.164** (2.53)	0.264*** (4.94)	0.129** (2.25)	-0.036 (-0.36)	-0.069 (-0.87)	0.233*** (3.12)
β^{hml}	0.619***	0.744***	0.958***	0.974***	1.261***	-0.642***
	(7.29)	(9.61)	(9.99)	(7.84)	(9.05)	(-4.21)
$\beta^{\it rmw}$	-0.001	0.002***	0.000	0.002**	-0.000	-0.001
	(-0.85)	(2.66)	(0.43)	(2.39)	(-0.02)	(-0.64)
$\beta^{\it cma}$	-0.002	-0.003***	-0.004***	-0.004**	-0.006***	0.004**
	(-1.26)	(-2.60)	(-2.71)	(-2.19)	(-3.42)	(2.23)
$eta^{\it ltg}$	0.011	0.145	0.075	0.200	0.250*	-0.238
	(0.09)	(1.31)	(0.79)	(1.31)	(1.75)	(-1.50)
eta^{crd}	-0.070	-0.134	-0.017	-0.210	-0.228	0.158
	(-0.41)	(-0.76)	(-0.09)	(-0.88)	(-0.95)	(0.69)
β^{ps}	-0.054	-0.118**	-0.177***	-0.233***	-0.210**	0.156**
	(-1.23)	(-2.29)	(-2.61)	(-2.78)	(-2.49)	(2.00)

t statistics in parentheses

^{*} p<0.10, ** p<0.05, *** p<0.01

Factor Loadings Sample Period: 1974-2016

	Low	(2)	(3)	(4)	High	Low-High
	Panel D. 5-F	actor Fama-Fr	ench + ltg + c	erd + ps (regre	ssion coefficie	nts)
β^{M}	0.880***	0.873***	0.992***	1.122***	1.286***	-0.406***
	(18.88)	(24.26)	(24.52)	(17.06)	(20.25)	(-7.06)
β^{smb}	0.164**	0.264***	0.129**	-0.036	-0.069	0.233***
	(2.53)	(4.94)	(2.25)	(-0.36)	(-0.87)	(3.12)
β^{hml}	0.619***	0.744***	0.958***	0.974***	1.261***	-0.642***
	(7.29)	(9.61)	(9.99)	(7.84)	(9.05)	(-4.21)
β^{rmw}	-0.001	0.002***	0.000	0.002**	-0.000	-0.001
	(-0.85)	(2.66)	(0.43)	(2.39)	(-0.02)	(-0.64)
β^{cma}	-0.002	-0.003***	-0.004***	-0.004**	-0.006***	0.004**
	(-1.26)	(-2.60)	(-2.71)	(-2.19)	(-3.42)	(2.23)
eta^{ltg}	0.011	0.145	0.075	0.200	0.250*	-0.238
	(0.09)	(1.31)	(0.79)	(1.31)	(1.75)	(-1.50)
$eta^{\it crd}$	-0.070	-0.134	-0.017	-0.210	-0.228	0.158
	(-0.41)	(-0.76)	(-0.09)	(-0.88)	(-0.95)	(0.69)
β^{ps}	-0.054	-0.118**	-0.177***	-0.233***	-0.210**	0.156**
	(-1.23)	(-2.29)	(-2.61)	(-2.78)	(-2.49)	(2.00)

t statistics in parentheses

^{*} p<0.10, ** p<0.05, *** p<0.01

Controlling for Bank Characteristics Risk Substitution Effect?

Portfolio	Low	(2)	(3)	(4)	High	Low-High	
	Par	nel A. Lever	age (total a	sset/common	equity)		
Low	0.008	-0.010	-0.037*	-0.018	-0.024	0.032	
	(0.38)	(-0.50)	(-1.72)	(-1.00)	(-1.10)	(1.31)	
Medium	0.022	0.013	-0.010	-0.022	0.007	0.015	
	(0.97)	(0.56)	(-0.40)	(-0.93)	(0.33)	(0.66)	
High	0.016	-0.009	-0.014	-0.054**	-0.043	0.059*	
	(0.71)	(-0.37)	(-0.49)	(-2.05)	(-1.61)	(1.76)	
Panel B. Tail risk							
Low	0.040*	-0.007	0.009	-0.014	-0.020	0.060**	
	(1.93)	(-0.35)	(0.47)	(-0.58)	(-0.97)	(2.55)	
Medium	-0.009	-0.009	-0.017	-0.036	-0.038	0.028	
	(-0.45)	(-0.40)	(-0.81)	(-1.40)	(-1.45)	(0.94)	
High	0.003	-0.025	0.017	-0.039	-Ò.067**	0.069**	
	(0.10)	(-0.95)	(0.55)	(-1.20)	(-2.56)	(2.14)	
	Panel (C. Charge-of	ffs (net char	ge-offs over t	otal assets)		
Low	0.026	-0.014	-0.002	-0.034	-0.035	0.061**	
	(1.08)	(-0.56)	(-0.09)	(-1.29)	(-1.56)	(2.38)	
Medium	0.014	-0.006	-0.012	-Ò.059**	-0.072***	0.085***	
	(0.69)	(-0.28)	(-0.57)	(-2.48)	(-2.74)	(2.71)	
High	0.023	-0.008	0.009	-0.010	0.000	0.023	
-	(1.09)	(-0.36)	(0.40)	(-0.45)	(0.00)	(0.95)	
N	516	516	516	516	516	516	

^{*} p<0.10, ** p<0.05, *** p<0.01

Liquidity Gap Aggregate Liquidity Gap (\$bn)

Liquidity Gap Properties Aggregate Volatile Liabilities (\$bn)

Liquidity Gap Properties Aggregate Liquid Assets(\$bn)

