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Abstract

Amihud’s (2002) stock (il)liquidity measure averages the daily ratio of absolute close-
to-close return to dollar volume, including overnight returns, while trading volumes
come from regular hours. Our modified measure addresses this mis-match by using
open-to-close returns. It better explains cross-sections of returns, doubling estimated
liquidity premia. We uncover the mechanism behind this improvement. Using non-
synchronous trading near close as an instrument reveals that overnight returns are
primarily information-driven and orthogonal to price impacts of trading: including
them in liquidity proxies magnifies measurement error, understating liquidity premia.
Our modification especially matters for finance/accounting applications that render
use of intraday data infeasible/undesirable.
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1 Introduction

The stock (il)liquidity measure proposed by Amihud (2002) is the most widely-used such

measure in empirical financial economics.1 Its key advantage stems from its simple con-

struction, which requires only daily return and dollar volume data that are available for

many markets and countries over long periods of time. Amihud’s measure has consistently

produced evidence of priced idiosyncratic liquidity and liquidity risk, and it has been found

to be a reasonable proxy of institutional trading costs.2

Our contributions are two-fold. First, we identify a simple yet striking improvement to

Amihud’s measure of liquidity. Our modified measure better explains the cross-section of

returns, yet requires almost no incremental data processing. We also document that liquidity

premia are larger than previously believed. Second, we uncover the source of this improve-

ment using non-synchronous trading as an instrument. We establish that overnight returns

are largely divorced from the price impacts of trading, and are likely information driven.

Our correction eliminates noise due to inclusion of these over-night information-driven price

movements that would otherwise bias estimated liquidity premia downward.

The widespread use of Amihud’s (2002) measure outside of market microstructure un-

derscores the applicability of our proposed correction. Intraday trade and quote data are

simply unavailable for many applications, necessitating the use of liquidity measures like

Amihud’s.3 In corporate finance and accounting research where use of intraday data is rare,

Amhihud’s measure is widely-used as an easy-to-construct proxy for liquidity.

1Amihud’s (2002) article has 1,804 citations by peer-reviewed published articles, including 247 in the
top-three finance journals and 50 in the top-three accounting journals (Web of Science, accessed May 6, 2019).

2See Chordia et al. (2000), Pástor and Stambaugh (2003), Acharya and Pedersen (2005), Sadka (2006),
Asparouhova et al. (2013), Drienko et al. (2017), Harris and Amato (2019), among others. Goyenko et al.
(2009) show that Amihud’s measure remains priced post-decimalization. Anand et al. (2013) and Barardehi
et al. (2019) provide evidence of strong time-series and cross-sectional correlations between Amihud’s
liquidity measure and actual and estimated institutional trading costs. Studies such as Lipson and Mortal
(2004) relate equity liquidity, captured by Amihud’s measure, and corporate finance decisions.

3Kingsley et al. (2017) find Amihud’s (2002) measure to be unsurpassed as a “cost-per-dollar-volume”
proxy for global research. Goyenko et al. (2009) show that it is a good proxy for the price impacts of trading.
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The standard Amihud (2002) measure, which we abbreviate as CCAM for close-to-close

Amihud measure, is constructed using averages of a daily proxy of price impact that divides

daily absolute return by the same day’s dollar trading volume. The measure captures the

price impact of trading, or the amount a given trading volume moves market prices. While

the denominator reflects trading volume during trading hours, the numerator reflects close-

to-close returns, or absolute return between the close of the previous day and the current day,

which includes overnight price movements. Such overnight adjustments reflect after-hours

price movements that are often driven by information arrival unrelated to the daily trading

volume used in the denominator (Barclay and Hendershott 2003; Santosh 2016).4

Our measure, which we abbreviate as OCAM for open-to-close Amihud measure, instead

uses the absolute return between opening and closing prices of the trading day, excluding

overnight price movements. This modification reflects two observations. First, the vast bulk

of trade occurs during trading hours, meaning that trading costs are realized then.5 This

means that a measure better reflects trading costs, or the price impacts of trading volume,

if it is calculated using data from trading hours. The same logic underlies the calculation of

other measures of stock liquidity such as spreads or estimates of Kyle’s λ using trade and

quote data exclusively from regular trading hours. Second, trading volumes reported by data

vendors such as CRSP almost entirely reflect transactions during trading hours.6 Figure 1

illustrates the time mismatch between measures of daily return and trading volume that,

respectively, enter the numerator and denominator of Amihud’s (2002) proxy of daily price

impacts. Measuring both the numerator and denominator over regular trading hours keeps

these two measurement inputs internally consistent.

4Barclay and Hendershott (2003) show that after-hour transactions possess more information content
than trades during regular hours. Santosh (2016) finds that 71% of stock value shocks driven by after-hour
earnings surprises are reflected in opening prices the following trading day. See also Stole and Whaley 1990
and Cao et al. 2000 for the impact of information revelation at open.

5Note that regular hours account for less than 20% of total hours in a week, suggesting that including
price movements realized during off-trading hours introduces significant noise.

6In recent years, CRSP volume includes the tiny fraction of trades that happen between 4:00pm and
8:00pm on NASDAQ and electronic communication networks (ECNs).
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Closet-1 Closet Opent 

Zero to very little volume 
(Not reported by CRSP) 

 

Almost all volume 
(Reported by CRSP) 

Open-to-close 
return (OCR) 

Close-to-close return (R) 

Figure 1: Illustration of time mismatch between daily measures of trading volume and
return. The figure illustrates the sampling of daily return and trading volume from a typical
trading day t. These measures are used to construct Amihud’s (2002) daily proxy of price impacts.

We establish that overnight price movements represent a major source of the observed

cross-sectional and time-series variations in the close-to-close Amihud measure (CCAM).

We show that these overnight returns are primarily information-driven, and have little to

no relevance for liquidity measurement. Including them in the illiquidity measure intro-

duces measurement error that could bias estimates of liquidity premia toward zero. OCAM

excludes such price movements, producing significantly higher explanatory power for the

cross-section of returns, and revealing larger liquidity premia.

Figure 2 reveals the impact of including overnight price movements on the measurement

of liquidity. Were there negligible differences between the two Amihud measures, then the

ratio of OCAM to CCAM would be close to one. Figure 2 plots the three cross-stock quar-

tiles of this ratio over time. Several key findings emerge: (i) the ratio is far less than one

for the bottom quartile of stocks in the first thirty years of the sample (ranging from below

0.5 to about 0.7 before rising to 0.8 and above by the mid-1990s), a pattern that cannot be

explained by cross-stock variation in after-hours trading;7 (ii) cross-stock variation appears

to decline over time; (iii) while the ratio displays a generally positive trend, there are several

7After-hours trading did not exist until 1991, and it was so thin that it motivated research to explain
this anomaly (e.g., Belcourt (1996)). Moreover, years before after-hours trading on ECNs was introduced,
disparities between the two measures had already fallen sharply (close to current levels).
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Figure 2: Evolution of the ratio of OCAM to CCAM . The figure plots the
temporal changes in the cross-stock distribution of the OCAM -to-CCAM for NYSE-
listed common shares in the 1964-2017 period. For each stock i in year y, the ratio
ROCiy = OCAMi,y−1/CCAMi,y−1 is calculated. The year-specific quartiles of this ratio are
plotted against time. See Section 2.2 for variable construction.

episodes of sharp systematic decline such as that during the 2008 financial crises, highlight-

ing the economic relevance of OCAM even in modern financial markets; (iv) the ratio is less

than one for almost 95% of stock-years; and (v) reflecting the temporal stability of the ratio,

the two measures display a strong time-series co-movement, indicating that OCAM likely

picks up temporal variation in price impacts similarly to CCAM .

Our modification leads to improvements in the ability of Amihud’s measure to explain

the cross-section of returns. We replicate and extend the cross-sectional analysis of Amihud

(2002) for NYSE-listed firms in the 1964–2017 period, using a novel database that reports

historical open prices. Liquidity premia based on OCAM are roughly double those obtained

based on the traditional CCAM—in Appendixes B and C, we verify the robustness of this

finding to corrections for upward biases identified by Asparouhova et al. (2010, 2013).8 We

8Also, because we standardize both measures for these tests, it is not the fact that OCAM is smaller in
magnitude that is driving our findings.
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document similar evidence when we use the two measures to estimate liquidity premia on

risk-adjusted returns from a Fama-French four-factor model in panel regressions. These esti-

mates control for both stock and time fixed effects, revealing that neither unknown fixed stock

characteristics nor temporal variation in sample composition drive our findings. Temporal

patterns in liquidity premia are consistent with findings of Asparouhova et al. (2010), Ben-

Rephael et al. (2013), and Harris and Amato (2018) that liquidity premia decline over time.

Our findings are robust to several considerations. First, we establish that temporal

changes in the composition of listed stocks do not explain the disparity between CCAM and

OCAM . Second, estimates are unaffected if we eliminate any impacts of open auctions by

excluding intervals at open. Third, qualitatively identical outcomes obtain when we exclu-

sively rely on CRSP data to construct OCAM . Indeed, using the CRSP-based 1993–2017

sample (CRSP first reports open prices in 1992), we find that OCAM produces statistically

significant liquidity premia of 3.7–4.8 bps per month for NYSE- and AMEX-listed stocks,

but CCAM is not associated with significant liquidity premia. Fourth, analysis of AMEX-

and NASDAQ-listed stocks reveals that estimated liquidity premia using OCAM are again

roughly double those using CCAM . In fact, liquidity premia for (the generally smaller)

AMEX- and NASDAQ-listed stocks are two to five times higher than those for NYSE-listed

firms, and they remain high in recent years.

To evaluate the incremental information content of each measure, we decompose each

version of Amihud’s (2002) measure into linearly orthogonal components with respect to the

alternative. The residuals from regressing OCAM on CCAM significantly explain the cross-

section of expected (risk-adjusted) returns. However, the converse is not true. We show in

Appendix E that OCAM ’s superior performance in capturing liquidity, relative to CCAM ,

also manifests itself in the higher correlations of OCAM with other standard measures of

stock liquidity.

Our findings also inform the debate on the pricing of the Amihud (2002) liquidity mea-
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sure. Lou and Shu (2017) argue that the pricing of Amihud’s (2002) measure is driven by

variation in the trading (dollar) volumes entering its denominator as opposed to variation in

absolute close-to-close returns that enter the numerator.9 Our analysis provides direct evi-

dence that the absolute return component (the numerator) drives pricing. Our modification

alters the absolute return component by removing overnight price movements, leaving the

dollar-volumes in the denominator unchanged. This single change sharply alters pricing of

Amihud’s measure in the cross-section.

We complete our analysis by uncovering what drives the cross-sectional and temporal

variation in the OCAM/CCAM ratio. In particular, we explain its rise and convergence

post decimalization, establishing that the improvements OCAM makes over CCAM reflect

(overnight) information-driven price movements. To do this, we exploit non-synchronous

trading near close, measured by the time distance between the last transaction of the day and

4:00pm EST.10 If a stock experiences a longer period of non-trading before close and informa-

tion flows per unit time are similar across stocks, then it should see more accumulated infor-

mation after the final trade, but before close. That accumulated information is impounded

into price at open on the next trading day, leading to greater overnight price movement.

The cross-sectional variation in the extent of non-trading across stocks explains a re-

markable share of the cross-sectional variation in the ratio of OCAM to CCAM post-1993.

Indeed, after accounting for the extent of non-trading, the cross-sectional distribution of the

OCAM/CCAM residual becomes stable over time—the temporal variation in the distri-

bution of the ratio is almost entirely explained by that in the distribution of non-trading.

After controlling for stock size and turnover, along with stock and time fixed effects, each

9Amihud and Noh (2018) argue that the log-linearization used by Lou and Shu (2017) to decompose
Amihud’s (2002) measure into the sum of the log of absolute return and the log of one over dollar volume
is incorrect. Lou and Shu (2017) omit the correlation term between daily absolute return and the inverse
of dollar volume, which Amihud and Noh (2018) show is priced.

10The literature has previously identified the importance of non-synchronous trading for large auto-
correlations in the returns of stock indexes. See Atchison et al. (1987).
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additional ten minutes of non-trading prior to close is associated with a 5-percentage-point

decline in the OCAM/CCAM ratio. Thus, extensive differences in non-trading near close

imply large disparities between the two liquidity measures. This analysis ties the extent of

greater measurement error in CCAM vis à vis OCAM to information-driven price move-

ments that are unrelated to price impacts of trading.

Our paper contributes to a literature that distinguishes price movements during trading

hours from those when markets are closed (e.g., Cliff et al. 2008; Barclay and Hendershott

2008; Hendershott et al. 2018; see also French and Roll 1986). Our modification highlights

the importance of time-matched price movement and trading volume inputs for Amihud’s

liquidity measure. Using this modification reveals that liquidity premia are larger than pre-

viously believed. We document a strong relationship between improvements in the quality

of Amihud’s measure obtained by removing overnight price movements, and the extent of

non-trading before close. This result highlights the information-driven nature of overnight

price movements, indicating a broader reach of our analysis.

Post-decimalization, empirical analyses of expected returns in U.S. markets suggest that

they have become more liquid; and high frequency liquidity measures are now available.

Nonetheless, Amihud’s (2002) liquidity measure remains vital for measuring liquidity in in-

ternational markets.11 Logic suggests that given how our correction matters for the pricing

of liquidity in the U.S.—the world’s leading financial market—it would matter more in less

liquid international or emerging markets that are fully or partially closed during U.S. trad-

ing hours. Indeed, in untabulated results, we find that the median OCAM/CCAM ratio in

11Amihud’s measure is heavily used in studies of markets outside North America. Amihud et al. (2015)
document positive liquidity premia across 45 countries in the 1990−2011 period. Lee (2011) documents
priced liquidity risk in international markets. Hung et al. (2014) find weaker post-earnings announcement
drifts in international markets that are more liquid according to Amihud’s measure. Boehmer et al. (2015)
show that increased algorithmic trading across 42 international markets impacts Amihud’s (2002) measure.
Chen et al. (2017) document eviiidence in developing markets that the initial enforcement of insider
trading laws is more effective for firms whose stocks witness improvements in their Amihud (2002) liquidity
measures. Lang et al. (2015) find that the Amihud (2002) measure is highly correlated with textual lengths
of financial reports for firms in the 42 countries studied.
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the Brazilian stock market is roughly half its NYSE counterpart in the 2008–2018 period,

indicating the heightened economic importance of our correction for such markets.

2 Data and variables

2.1 Amihud illiquidity and modified Amihud

The traditional Amihud (2002) stock liquidity measure, dubbed CCAM (for close-to-close

Amihud), calculates the average of the daily absolute return per dollar traded over a given

time period spanning D consecutive trading days, where daily returns reflect close-to-close

returns, incorporating overnight price adjustments and dividend distributions. As in Amihud

(2002), CCAMiy uses Diy daily observations of stock i in year y,

CCAMiy =
1

Diy

Diy∑
d=1

|Ridy|
DV OLidy

, (1)

where Ridy and DV OLidy, respectively, are stock i’s return and dollar trading volume on day

d in year y; and Diy is the number of days for which trading volume for stock i in year y is

non-zero. In our rolling regression analyses, we use an alternative construction that updates

measures monthly. Thus, instead of using annual averages that we indexed by y in (1), we

average the daily absolute return per dollar traded over the 12 months ending in month t:

CCAMit =
1

Dt−12
it

Dt−12
it∑
d=1

|Rt−12
idt |

DV OLt−12
idt

. (2)

As such, the measure in month t uses stock i’s Dt−12
it daily observations, for days with non-

zero trading volume, in the previous 12 months rather than from the previous calendar year.

Our open-to-close version, dubbed OCAM , instead uses the open-to-close absolute re-

turn to construct daily absolute returns per dollar traded. Stock i’s open-to-close return on

day d is

OCRid =
P c
id

P o
id

− 1, (3)
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where P o
id and P c

id are the open and close prices, respectively. As such, the analogues to the

traditional Amihud’s measures defined in equations (1) and (2) are

OCAMiy =
1

Diy

Diy∑
d=1

|OCRidy|
DV OLidy

(4)

and

OCAMit =
1

Dt−12
it

Dt−12
it∑
d=1

|OCRt−12
idt |

DV OLt−12
idt

. (5)

2.2 Data and variable definitions

Our main sample runs from January 1, 1963 to December 31, 2017, and contains trade

and price information, focusing on all NYSE-listed stocks as in Amihud (2002). In robust-

ness analyses, we extend the sample to include AMEX- and NASDAQ-listed stocks. We

obtain daily closing prices, trading volumes, and dividend distributions from Daily CRSP.

We match these daily observations with open prices obtained from Global Financial Data

(GFD).12 For stock-days with open price observations in GFD, we match daily observations

across CRSP and GFD using security identifiers PERMNO, NCUSIP, and CIK.13 We ob-

tain monthly returns, prices, dividend distributions, and number of shares outstanding from

Monthly CRSP.14 We match these monthly data with 1-month T-bill rates, and Fama-French

four-factor returns from WRDS. We exclude a stock-year set of observations if that stock’s

daily closing price is below $1 on any day in the preceding calendar year.15 We follow Ami-

hud (2002) by excluding stock-month observations that are among the 1% least liquid in

each month, according to Amihud’s measure.

12As a robustness check of GFD opening prices, we estimate our asset pricing model for 1993-2017 using
opening price data from CRSP, establishing that our findings are unaffected by the data source.

13To control for potential data errors in CRSP or GFD, we use similarity in closing prices reported by
CRSP and GFD, dropping a matched stock-day observation if its CRSP closing price deviates from that in
GFD by more than 0.1%. For example, a stock day with a CRSP closing price of $20.03 and a GFD closing
price of $20 is dropped.

14We replace a stock’s monthly return with its de-listing return dlret when a stock is de-listed.
15In analyses based on replicating Amihud’s (2002) findings, we replace the “penny-stock” filter with one

that excludes stocks with end-of-previous-year’s closing prices below $5, as in Amihud (2002).
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We construct cross-sections of stock characteristics and merge them with cross-sections of

monthly returns in two ways. First, following Amihud (2002), we calculate market betas of

size portfolios (deciles of market capitalizations at the end of the previous year), βmkt
py , using

daily stock and equally-weighted market returns every year—we use βmkt
py for βmkt

iy if stock i

is in portfolio p in year y. We then compile the following stock-specific measures at annual

frequencies: Dividend yield, DYDiy, is defined as the ratio of total dividend distributions in

a year divided by the closing price at the end of the year. Annual measures of momentum

are the returns over the last 100 days of the year, R100iy, and the realized return over the

earlier remaining days of the year, R100Y Riy. Annual return volatility is captured by the

annual standard deviation of daily returns per year, SDRETiy. Market capitalization, Miy,

is the product of shares outstanding and the closing price at the end of the year. We match

these annual measures with each of the monthly return observations of the relevant stock

over the following year, to construct an unbalanced monthly panel.

Our second approach addresses the possibility that using the same annual measures of

stock characteristics to explain returns in each of the 12 monthly cross-sections in the follow-

ing year adds noise to later month observations in that year—the previous year’s measure

grows less germane. This leads us also to use a rolling regression approach, constructing stock

characteristics at monthly frequencies, and then matching them with monthly returns in the

next month.16 Fama-French four-factor betas (βmkt
i,t−1, β

hml
i,t−1, β

smb
i,t−1, and βumd

i,t−1) at the end of

month t− 1 are estimated at the stock level using weekly data from the preceding two years

(months t−24 to t−1), requiring at least one year of data. We use four-factor betas, 1-month

T-bill rate, and monthly Fama-French factor portfolio returns to construct risk-adjusted re-

turns. Dividend yield, DYDi,t−1, divides total dividend distributions between months t− 12

and t− 1 by the closing price at the end of month t− 1. Momentum measures RET t−4
i,t−1 and

RET t−12
i,t−5 , respectively, capture compound returns over the preceding three months and the

16See, e.g., Lu and Shu (2017) and Barardehi et al. (2019).
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nine months before that. Return volatility SDRETi,t−1 is given by the standard deviation

of daily stock returns over the preceding 12 months. Market capitalization, Mi,t−12, is the

product of shares outstanding and the closing price at the end of the month, a year earlier.

We use monthly TAQ data to collect time stamps of the last transaction per trading

day, during regular trading hours (9:30am−4:00pm EST), for all NYSE-listed stocks in the

1993−2013 period.17 We use the temporal distance between these time stamps and 4:00pm

EST, in hours, to construct a measure of the extent of non-trading by stock-year. For a given

year, we match these observations with our main sample, described above, using NCUSIP

from CRSP and CUSIP from TAQ. For observations without such links, we match SYMBOL

from TAQ with TSYMBOL from CRSP.

3 Liquidity, overnight returns, and stock attributes

Figure 2 on page 3, which plots the temporal evolution in the distribution of the ratio of

open-to-close and close-to-close Amihud (2002), ROCiy =
OCAMiy

CCAMiy

, by quartile, reveals

that overnight price movements play a major role in driving both cross-sectional and tempo-

ral variation in the traditional Amihud (2002) measure, CCAM . Including overnight price

movements also inflates the measure for most stocks. Importantly, as the evolution of the

three quartiles of this ratio indicate, the contamination driven by overnight price movements

is time-varying and declining, but not disappearing. Table 1 presents medians of several stock

characteristics across six ROC categories, after sorting the sample on ROC on a year-by-

year basis. Save for market capitalization, stocks in different such categories do not appear

to possess materially different characteristics, indicating that the cross-stock variability in

the mismeasurement of liquidity is unlikely to be entirely driven by stock characteristics.

One might wonder whether the patterns documented in Figure 2 could reflect temporal

variation in the composition of common stocks over our long sample period. One could posit

17The TAQ database is available for 1993 and after.
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Table 1: Stock characteristics by levels of ROC. This table presents medians of stock
characteristics by different categories of ROC, i.e., the ratio of OCAM -to-CCAM . Each year,
stocks are sorted into 6 ROC percentile categories: less than 5%, 5%−25%, 25%−median,
median−75%, 75%−95%, and greater than 95%. Medians of stock characteristics, based on
observations from the previous year, are calculated by these categories. βmkt is market beta, M
is market capitalization in millions of dollars, DYD is dividend yield (%), SDRET is daily return
volatility (%), and PRC is the end-of-year closing price.

Percentile of ROC
<5% 5%−25% 25%−50% 50%−75% 75%−95% >95%

ROC 0.26 0.64 0.85 0.90 0.94 1.02
βmkt 0.99 1.01 1.03 1.03 1.02 0.99
M 315.6 190.5 399.6 653.6 685.1 424.3
DYD 2.30 1.98 1.92 1.99 2.04 1.84
SDRET 1.79 2.00 2.12 2.11 2.13 2.22
PRC 26.38 23.00 25.40 27.13 24.75 17.25

that the disparity between OCAM and CCAM might capture some unknown stock charac-

teristics, and that the presence of stocks with small ROCiy =
OCAMiy

CCAMiy

in the cross-section

has varied over time. In fact, the number of publicly listed firms varies significantly over

the past few decades (Kahle and Stulz 2017).18 Our panel regression analyses addresses this

directly by including stock and time fixed effects. To further preclude the possibility that

results are driven by changes in sample composition, we show that the temporal variation in

the cross-section of ROC is robust to sample composition. Figure 3 focuses on the sample

featuring the 800 stocks with the largest market-capitalizations at the end of the previous

year. The figure reveals qualitatively identical patterns in the year-specific cross-stock quar-

tiles of ROCiy to those in Figure 2; there is only a moderate upward shift in early decades

in the bottom quartile and median, with minimal shifts for the top quartile (less than 2

percentage points). This finding is consistent with the result in Table 1 that ROC is largely

unrelated to several key stock characteristics. Moreover, we rule out the possibility that

18The number of stocks per year in our final sample of common NYSE-listed stocks has a minimum of
859 in 1991 and a maximum of 1,370 in 1999. The mean and median number of such stocks are 1,067.7 and
1,070, respectively.
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price movements and trading volumes associated with open auctions alter our findings. In

Appendix A, we exclude the returns and volumes realized in the first several minutes of the

trading day to show that open auctions do not drive our results.
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Figure 3: Evolution of the ratio of OCAM to CCAM (800 largest firms). The
figure plots the temporal changes in the cross-stock distribution of the OCAM -to-CCAM
among the 800 NYSE-listed common shares with largest market-capitalizations in the
1964-2017 period. Each year stocks are sorted by market-capitalization to obtain the
800 firms featuring the largest market values. For each stock i in year y, the ratio
ROCiy = OCAMi,y−1/CCAMi,y−1 is calculated. The year-specific quartiles of this ratio are
plotted against time.

Because our focus is on the measurement of liquidity, the patterns in Figure 2 are espe-

cially relevant for smaller and more thinly-traded stocks, which are generally perceived as

relatively less liquid. We document evidence of this by examining how the ratio ofOCAMiy to

CCAMiy, ROCiy, varies with measures of size and turnover. We measure stock i’s size in year

y by the natural log of its market capitalization at the end of year y− 1. Our turnover mea-

sure for stock i is the natural log of its average daily turnover19 in year y−1, i.e., ln(TRi,y−1).

We fit a panel of annual ROC measures against these stock characteristics for the time pe-

19Daily turnover is defined as the ratio of the number of shares traded daily to the corresponding number
of shares outstanding.
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riod 1964−2017, clustering standard errors at both stock and year levels to account for the

possibility of inflated t-statistics driven by auto-correlated error terms (see Petersen 2009).

We model the cross-sectional variation in ROCiy using the following specification.

ROCiy = α0 + α1ln(Mi,y−1) + α2ln(TRi,y−1) + fixed effects + εiy, (6)

where we include both stock and year fixed effects. Because OCAM is closer to CCAM

when ROCiy is larger, a positive coefficient α1 or α2 means that the two measures differ less

when market capitalization or turnover, respectively, are larger.

Table 2: Association between OCAM-to-CCAM ratio and stock characteristics. This
table presents panel regression estimates when the ratio of open-to-close and close-to-close Amihud
(2002) measures, ROCiy, is regressed on the natural logs of market-capitalization, ln(Mi,y−1), and
mean daily turnover, ln(TRi,y−1), as in equation (6), in the 1964−2017 sample. Specifications
differ in the set of fixed effects introduced. Numbers in parentheses reflect standard errors of
estimates, clustered at both stock and year levels. Symbols ∗, ∗∗, and ∗∗∗ reflect statistical
significance at 10%, 5%, and 1% type one error, respectively.

Dep. Var. = ROC 1964−2017 1964−1980 1981−2000 2001−2017
ln(M) 0.028∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.023∗∗∗ 0.036∗∗∗ 0.036∗∗∗ −0.007∗∗∗

(0.003) (0.004) (0.004) (0.005) (0.016) (0.006) (0.002)

ln(TR) 0.064∗∗∗ 0.052∗∗∗ 0.060∗∗∗ 0.058∗∗∗ 0.110∗∗∗ 0.071∗∗∗ 0.008∗

(0.004) (0.005) (0.006) (0.006) (0.010) (0.006) (0.004)

Stock fixed effects No Yes No Yes Yes Yes Yes

Year fixed effects No No Yes Yes Yes Yes Yes

Observations 58,120 18,051 21,618 18,451

R2 0.11 0.32 0.14 0.34 0.27 0.45 0.57

Table 2 shows large positive and significant relationships between ROC and measures of

stock size and turnover, indicating that potential “contamination” by overnight price move-

ments is more pronounced for smaller and more-thinly traded stocks. Variation in these two

stock characteristics explain over 11% of the variation in ROC, and the positive associations

between the ratio and these characteristics remain even in the presence of both stock and

year fixed effects.
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The fact that the impact of overnight price movements on measures of liquidity is greater

for less liquid stocks suggests that our modified measure of liquidity may be priced differently

in the cross-section of stock returns. To reinforce this conjecture, we establish that the dif-

ferences between CCAM and OCAM reflect substantially different cross-sectional rankings

of stocks based on the two measures. We find that the differences do not represent a simple

scaling effect: rank correlation statistics between CCAM and OCAM are well below one,

especially for less liquid stocks and in earlier years of the sample. To quantify this, we sort

stocks each year into top 30%, middle 40%, and bottom 30% liquidity according to CCAM .

We then calculate Kendall’s τ statistics every year within each liquidity group, and calculate

the average statistic across different years in the entire sample period or in a sub-period.

The two measures of liquidity order stocks in the cross-section very differently. Table 3

shows that rank correlations over the entire sample period are far less than one. These cor-

relations are much smaller for less liquid stocks, going from 76% for the least liquid stocks

to 88.9% for the most liquid ones. Consistent with the patterns presented in Figure 2, rank

correlation statistics across all liquidity groups substantially rise over time.20 These findings

underscore that CCAM and OCAM measure cross-sectional differences in stock liquidity

differently, and hint at potentially different pricing of the two measures in the cross-section.

Table 3: Rank correlation statistics between OCAM and CCAM . This table presents
Kendall’s τ statistics across CCAM and OCAM over time periods, 1964−2017, 1946−1980,
1981−2000, and 2001−2017. Each year, stocks are sorted into top 30%, middle 40%, and bottom
30% liquidity according to CCAM . Kendall’s τ statistic is calculated every year within each liquid-
ity group, and then averaged across different years in the entire sample period or in a sub-period.

Liquidity group 1964–2017 1964–1980 1981–2000 2001–2017
Top 30% liquid 88.9% 87.6% 84.0% 96.0%
Middle 40% liquid 84.9% 72.9% 86.0% 95.7%
Bottom 30% liquid 76.0% 57.7% 74.6% 95.9%

20Unreported analyses verify qualitatively similar patterns based on Pearson and Spearman correlations.
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4 Modified Amihud measure and liquidity premia

We begin our asset pricing tests by confirming basic results in Amihud (2002) as a bench-

mark. In particular, using both the classic close-to-close price impact measure from Amihud

(2002), CCAM , and our proposed open-to-close modified Amihud measure, OCAM , we

replicate the sixth, eighth, and ninth columns of Table 1 (p. 41) in Amihud (2002) as closely

as possible.21 We then contrast findings based on CCAM with those obtained using OCAM

to highlight the value of our modification. We model the cross-section of returns in month

t of year y, Rity as in Amihud (2002), by estimating

Rity = k0ty +
J∑

j=1

kjtyX
j
i,y−1 + εity (7)

using the Fama-MacBeth approach. Xj
i,y−1 is stock i’s jth characteristic, measured using

data from year y− 1; kjty is the jth characteristic’s loading; and εity is an error term. To gen-

erate estimates that can be compared to those in Amihud (2002), we similarly fit the model

for three time periods: 1964−1997, 1964−1980, and 1981−1997.22 Also following Amihud

(2002), we divide each CCAMiy and OCAMiy observation by its respective sample mean

across stocks in year y. This centers each liquidity measure to have a mean of one. Thus,

the coefficients on liquidity measures reflect liquidity premia: the additional return investors

require for holding the stock with average liquidity, compared to the idealized, fully-liquid

stock. This centering also ensures that any differences that we find are not mechanically

driven by the fact that OCAM is on average smaller than CCAM .

Table 4 shows that when we use CCAM to explain cross-sections of stock returns, our

qualitative findings perfectly align with those in Amihud (2002). In particular, we find

positive and significant coefficients on stock (il)liquidity and measures of momentum, but

21We cannot perfectly replicate the results because GFD does not report open prices for virtually all
stocks covered by CRSP, and also because for some stocks we cannot identify a valid CRSP-GFD link.

22For these estimates, we implement the same filter as in Amihud (2002) for penny stocks. That is, we
exclude a stock from year y cross-sections if its closing price at the end of year y − 1 falls below $5.
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Table 4: Replication of Table 1 from Amihud (2002) with and without correcting for
overnight price movements. This table presents Fama-MacBeth estimates of equation (7) for
all NYSE-listed stocks for time periods 1964−1997, 1964−1980, and 1981−1997. The dependent
variable is the monthly stock return in percentage points. CCAM is the traditional Amihud’s
liquidity measure, and OCAM is Amihud’s measure after removing overnight price movements.
We divide each CCAMiy and OCAMiy observation by its respective sample mean across stocks
in year y, thereby centering each measure to have a mean of one, making coefficients across the
two measures comparable. βmkt is market beta estimated across ten size portfolios using daily
observations from the last calendar year. R100 is the compound return on a stock in the last 100
days of the previous calendar year, and R100Y R is the compound return over the earlier remaining
trading days in the last calendar year. ln(M) is the natural log of market capitalization at the end
of the previous calendar year. SDRET is the standard deviation of daily returns over the previous
calendar year. DYD is the ratio of total cash dividend distribution over the previous calendar
year to the closing price at the end of that year, or dividend yield. Newey-West standard errors
using two lags are reported in parentheses. Symbols ∗, ∗∗, and ∗∗∗ reflect statistical significance at
10%, 5%, and 1% type one error, respectively.

1964−1997 1964−1980 1981−1997
βmkt −0.280 −0.171 −0.522 −0.506 −0.038 0.164

(0.308) (0.306) (0.442) (0.437) (0.429) (0.424)

CCAM 0.056∗∗ 0.066∗ 0.046∗∗

(0.022) (0.039) (0.021)

OCAM 0.120∗∗∗ 0.157∗∗∗ 0.084∗∗∗

(0.032) (0.055) (0.031)

R100 0.794∗∗∗ 0.774∗∗∗ 0.722∗∗ 0.697∗∗ 0.867∗∗∗ 0.851∗∗∗

(0.227) (0.227) (0.332) (0.332) (0.310) (0.309)

R100Y R 0.389∗∗∗ 0.386∗∗∗ 0.452∗∗ 0.457∗∗∗ 0.325∗∗ 0.316∗∗

(0.109) (0.110) (0.174) (0.175) (0.131) (0.131)

ln(M) −0.063 −0.042 −0.149∗∗ −0.117∗∗ 0.023 0.033
(0.040) (0.038) (0.062) (0.057) (0.050) (0.051)

SDRET −1.061∗∗ −1.152∗∗ −0.493 −0.612 −1.628∗∗ −1.692∗∗

(0.495) (0.509) (0.709) (0.742) (0.684) (0.690)

DYD −0.993 −0.975 −1.905 −1.862 −0.082 −0.087
(1.161) (1.148) (2.289) (2.262) (0.383) (0.381)

negative and significant coefficients on stock size and return volatility measures. Substi-

tuting OCAM for CCAM leaves the coefficients on other stock characteristics essentially

unchanged, but leads to liquidity premia that are more that double those obtained using

CCAM .23 The same qualitative findings obtain when we expand the sample period to 1964-

23Note that because we normalize CCAM and OCAM to have the same mean of 1, the fact that we find
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Table 5: Fama-MacBeth estimates of monthly returns on stock characteristics, all
NYSE-listed stocks, 1964−2017. This table presents Fama-MacBeth estimates of Equation (7)
for all NYSE-listed stocks in time periods 1964−2017, 1964−1980, 1981−2000, and 2011−2017.
The dependent variable is the monthly stock return in percentage points. CCAM is the traditional
Amihud’s liquidity measure, and OCAM is Amihud’s measure after removing overnight price
movements. We divide each CCAMiy and OCAMiy observation by its respective sample mean
across stocks in year y, thereby centering each measure to have a mean of one. βmkt is market beta
estimated across ten size portfolios using daily observations from the last calendar year. R100 is
the compound return on a stock in the last 100 days of the previous calendar year, and R100Y R
is the compound return over the earlier remaining trading days in the last calendar year. ln(M) is
the natural log of market capitalization at the end of the previous calendar year. SDRET is the
standard deviation of daily returns over the previous calendar year. DYD is the ratio of total cash
dividend distribution over the previous calendar year to the closing price at the end of that year,
or dividend yield. Newey-West standard errors using two lags are reported parentheses. Symbols
∗, ∗∗, and ∗∗∗ reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
βmkt 0.047 0.141 −0.522 −0.506 0.272 0.436 0.342 0.434

(0.229) (0.228) (0.442) (0.437) (0.423) (0.416) (0.306) (0.312)

CCAM 0.043∗∗∗ 0.066∗ 0.042∗∗ 0.021∗∗

(0.014) (0.039) (0.019) (0.010)

OCAM 0.090∗∗∗ 0.157∗∗∗ 0.076∗∗∗ 0.040∗∗∗

(0.021) (0.055) (0.029) (0.014)

R100 0.586∗∗∗ 0.569∗∗∗ 0.722∗∗ 0.697∗∗ 0.671∗∗ 0.654∗∗ 0.356 0.349
(0.165) (0.165) (0.332) (0.332) (0.290) (0.289) (0.215) (0.214)

R100Y R 0.270∗∗∗ 0.268∗∗∗ 0.452∗∗ 0.457∗∗∗ 0.283∗∗ 0.274∗∗ 0.079 0.078
(0.086) (0.086) (0.174) (0.175) (0.140) (0.141) (0.131) (0.130)

ln(M) −0.064∗∗ −0.049∗ −0.149∗∗ −0.117∗∗ 0.015 0.026 −0.072∗∗ −0.070∗∗

(0.028) (0.027) (0.062) (0.057) (0.048) (0.048) (0.031) (0.031)

SDRET −0.761∗ −0.824∗∗ −0.493 −0.612 −1.540∗∗ −1.596∗∗ −0.130 −0.148
(0.395) (0.403) (0.709) (0.742) (0.647) (0.653) (0.695) (0.697)

DYD −1.061 −1.045 −1.905 −1.862 0.008 0.009 −1.462∗∗ −1.455∗∗

(0.748) (0.739) (2.289) (2.262) (0.332) (0.330) (0.565) (0.566)

2017 in Table 5. We find the same doubling in the estimated liquidity premium, even in

recent years when differences in the magnitudes of CCAM and OCAM are small.

The late 1990s and the new millennium featured a massive increase in exchange-traded

funds, whose shares are traded on U.S. security markets, but whose fundamental risks differ

larger liquidity premia is due to the measure’s relative abilities in explaining the cross-section of returns.
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from those of individual corporations. This tilts the composition of the cross-section of stocks

away from common shares, altering the sample composition. To account for this, we focus

on common shares in the remainder of our analysis. This analysis eliminates penny stocks

by requiring a minimum daily close price of $1 over the entire previous calendar year. This

differs from Amihud (2002) where penny stocks are identified solely based on end-of-year

close prices that fall below $5. We obtain qualitatively similar results based on either ap-

proach. Table 6 replicates Table 5, focusing on common shares only. Once more, estimated

liquidity premia double when we use OCAM in lieu of CCAM .

Of note, in the sample of common shares, the declining pattern in liquidity premia man-

ifests itself in liquidity premia that are not significantly different from zero post decimaliza-

tion. Similar findings have been documented, for example by Ben-Rephael et al. (2013).24

Appendix B presents the analogue of Table 6 for a sample that includes both NYSE- and

AMEX-listed stocks. Liquidity premia grow by nearly 100% in the more comprehensive sam-

ple, indicating that the generally smaller (less liquid) AMEX-listed stocks command larger

liquidity premia. Moreover, the OCAM point estimates remain larger than respective esti-

mates for CCAM in this sample. Appendix C extends the analysis to NASDAQ-listed stocks.

Liquidity premia for NASDAQ-listed firms are four to five times larger than those for NYSE-

and AMEX-listed stocks, and once again liquidity premia based on OCAM are roughly dou-

ble those based on CCAM . Moreover, in Appendix C, we see that our results are robust to

estimation using open prices from CRSP for the subset of years for which they are available.

Appendix D shows that the significant liquidity premia found in the sample of all NYSE-

listed stocks post-decimalization, presented in the last two columns of Table 5, reflect premia

24In untabulated results, we find that smaller stocks in the sample still command liquidity premia post
decimalization. For example, in the 2001–2017 period, both versions of Amihud’s measure have significant
explanatory powers for the returns of NYSE-listed stocks whose market-capitalizations fall below the
sample median. We estimate monthly liquidity premia of 3bps and 4.2bps based on CCAM and OCAM ,
respectively, in this subsample of small stocks and no premia for stocks with market-capitalizations above
the sample median.
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Table 6: Fama-MacBeth estimates of monthly returns on stock characteristics,
NYSE-listed common shares, 1964−2017. This table presents Fama-MacBeth estimates of
Equation (7) for NYSE-listed common shares in time periods 1964−2017, 1964−1980, 1981−2000,
and 2011−2017. The dependent variable is the monthly stock return in percentage points. CCAM
is the traditional Amihud’s liquidity measure, and OCAM is Amihud’s measure after removing
overnight price movements. We divide each CCAMiy and OCAMiy observation by its respective
sample mean across stocks in year y, thereby centering each measure to have a mean of one,
making coefficients across the two measures comparable. βmkt is market beta estimated across ten
size portfolios using daily observations from the last calendar year. R100 is the compound return
on a stock in the last 100 days of the previous calendar year, and R100Y R is the compound return
over the remaining trading days in the last calendar year. ln(M) is the natural log of market
capitalization at the end of the previous calendar year. SDRET is the standard deviation of daily
returns over the previous calendar year. DYD is the ratio of total cash dividend distribution
over the previous calendar year to the closing price at the end of that year, or dividend yield.
Newey-West standard errors using two lags are reported in parentheses. Symbols ∗, ∗∗, and ∗∗∗

reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
βmkt 0.043 0.059 −0.186 −0.179 0.402 0.401 −0.145 −0.100

(0.303) (0.310) (0.439) (0.444) (0.559) (0.555) (0.563) (0.596)

CCAM 0.031∗∗ 0.052 0.028∗ 0.014
(0.013) (0.034) (0.016) (0.009)

OCAM 0.062∗∗∗ 0.119∗∗ 0.053∗∗ 0.017
(0.018) (0.049) (0.022) (0.012)

R100 0.502∗∗ 0.492∗∗ 0.698∗∗ 0.678∗∗ 0.865∗∗∗ 0.855∗∗∗ −0.103 −0.104
(0.214) (0.213) (0.341) (0.342) (0.272) (0.270) (0.474) (0.472)

R100Y R 0.289∗∗∗ 0.286∗∗∗ 0.466∗∗∗ 0.467∗∗∗ 0.364∗∗ 0.358∗∗ 0.030 0.027
(0.095) (0.095) (0.178) (0.179) (0.145) (0.145) (0.172) (0.172)

ln(M) −0.125∗∗∗ −0.104∗∗∗ −0.193∗∗∗ −0.158∗∗∗ −0.045 −0.018 −0.149∗∗∗ −0.148∗∗∗

(0.034) (0.034) (0.065) (0.060) (0.062) (0.064) (0.047) (0.049)

SDRET −1.215∗∗∗ −1.295∗∗∗ −0.419 −0.541 −1.999∗∗∗ −2.112∗∗∗ −1.091 −1.095
(0.373) (0.381) (0.713) (0.739) (0.540) (0.553) (0.697) (0.698)

DYD −0.248 −0.235 −0.678 −0.621 0.354 0.342 −0.519 −0.518
(0.735) (0.721) (2.281) (2.236) (0.311) (0.307) (0.453) (0.453)

on non-common shares. This finding is in line with one in Ben-Rephael et al. (2013), who

argue that the diminished liquidity premium among common shares in recent years reflects

the introduction of alternative investment instruments that facilitate indirect claims to com-

mon shares. For example, investors holding ETFs are not exposed to trading costs of the
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underlying assets, even though they invest in them.

We now show that OCAM does a better job than CCAM of explaining the cross-section

of stock returns, something that need not be implied by the larger liquidity premium associ-

ated with OCAM . Due to the high correlation between CCAM and OCAM , we decompose

each version of Amihud’s measure into two linearly orthogonal components with respect to

the other version.25 We estimate

CCAMity = λ0ty + λ1tyOCAMity + Zity (8)

and

OCAMity = γ0ty + γ1tyCCAMity + Z̃ity (9)

every month, and store the corresponding residuals Zity and Z̃ity. We then estimate Equa-

tion (7) using the Fama-MacBeth approach, replacing either CCAM or OCAM with the

corresponding residual version of Amihud’s measure, respectively Zity or Z̃ity. The coefficient

on each residual uncovers the incremental informational content of each version of Amihud’s

measure over its alternative counterpart for the pricing of liquidity.

Table 7: Fama-MacBeth estimates for pricings of orthogonally-decomposed measures,
NYSE-listed common shares, 1964−2017. This table presents Fama-MacBeth estimates of
Equation (7) for NYSE-listed common shares in time periods 1964−2017, 1964−1980, 1981−2000,
and 2011−2017. The dependent variable is monthly stock return in percentage points. Independent
variables are identical to those in Table 6, save for the measures of stock liquidity. Z is substituted
for CCAM , and reflects the residuals from Equation (8). Z̃ is substituted for OCAM , and reflects
the residuals from Equation (9). Newey-West standard errors using two lags are reported in the
parentheses. Symbols ∗, ∗∗, and ∗∗∗ reflect statistical significance at 10%, 5%, and 1% type one
error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
Z −0.035∗∗ −0.074∗ −0.024 −0.008

(0.017) (0.044) (0.021) (0.020)

Z̃ 0.072∗∗∗ 0.144∗∗ 0.059∗∗ 0.018
(0.022) (0.058) (0.027) (0.024)

25Lou and Shu (2017) and Barardehi et al. (2019) adopt similar approaches.
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Table 7 shows that when we remove the information contained in CCAM related to varia-

tion in OCAM , the residual is not priced. Indeed, it produces a negative coefficient, possibly

reflecting pricing of volatility, rather than liquidity. In contrast, the residual from regressing

OCAM on CCAM , i.e., Z̃, is priced over the entire sample period, as well as in the four last

decades of the previous millennium. In essence, little relevant information is lost when we

take out the information contained in the classical CCAM Amihud measure. Phrased differ-

ently, including the noise in the form of close-to-open returns appears to add measurement

error that attenuates estimates of liquidity premia. We further observe that although the

“pricing” of each residual loses statistical significance in the 2001-2017 post-decimalization

time period, the coefficient signs are consistent with those found in earlier time periods.

Our findings using Fama-MacBeth regressions showcase the meaningful improvements

in Amihud’s liquidity measure that obtain when one uses open-to-close returns to measure

price impacts rather than close-to-close returns. However, this approach is not designed to

control for unobserved temporally-fixed stock characteristics when estimating coefficients,

and it cannot account for fixed or varying auto-correlations in the error terms that may lead

to inflated t-statistics (see Petersen (2009)). Another possible concern with our previous

estimates is that we match all monthly returns observations in year y with measures con-

structed using data from year y − 1. This matching suggests that investors only care about

information from last calendar year rather than more recent information.

We next take a conservative estimation approach, which establishes that our findings

are robust to these potential biases. We estimate panels of monthly stock returns that are

matched with stock characteristics constructed from the most recent twelve months of data

(see Section 2). We use a Fama-French four-factor model to construct risk-adjusted returns

as the dependent variable in our panel regressions. Using risk-adjusted returns as dependent

variables deals with the “errors-in-variables” issue when test assets are individual stocks

(Brennan et al. 1998). Imposing the functional form via which systematic risk factor load-
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ing and expected returns are related both shifts measurement error to the left-hand-side and

soaks up variation in the dependent variable. This restricted model also reduces the flexi-

bility with which coefficients are estimated. For these reasons the estimation procedure is

more conservative than that in Equation (7). In addition, panel regressions let us control for

invariant stock and time characteristics by use of stock and month-year fixed effects. Finally,

we cluster standard errors at both month-year and stock levels. That is, we estimate

RAit = α0 + α1LIQi,t−1 + α2RET
t−4
i,t−1 + α3RET

t−12
i,t−5 + α4 ln(Mi,t−12)

+ α5SDRETi,t−1 + α6DYDi,t−1 + fixed effects + uit, (10)

where RAit are risk-adjusted returns from a Fama-French four-factor model; fixed effects

include both month-year and stock effects; LIQ ∈ {CCAM,OCAM}; and standard errors

are clustered at both time and firm levels to account for auto-correlations in the error term,

uit, following Cameron et al. (2012). For a given liquidity measure, the liquidity premium,

in basis points, is the product of the coefficient on the liquidity measure and the measure’s

sample average.26

Table 8 reinforces our earlier findings. Even after controlling for stock fixed effects, and

accounting for the auto-correlations in the error terms, we obtain significantly positive liq-

uidity premia using both versions of Amihud’s measure. Again, liquidity premia obtained

using OCAM are larger than those obtained using CCAM in the entire sample period, as

well as in the first and second subsample periods of our data. Temporal patterns are also

similar to what we found earlier: the premium on monthly risk-adjusted returns based on

OCAM goes from 12.5 basis points per month in 1964-1980 to 5.9 basis points in 1981-2000,

before vanishing post-decimalization.

Our final asset pricing tests conduct the panel regression analogues of the orthogonal

26The panel analysis controls for temporal changes in all variables of the model by including month-year
fixed effects. As such, we do not center liquidity measures to have sample means of 1 to avoid creating
inconsistencies with how time fixed effects control for common time variations. Accordingly, liquidity
premia must be calculated as the product of the regression coefficient and sample mean.
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Table 8: Panel regression estimates of monthly risk-adjusted returns on stock charac-
teristics, NYSE-listed common shares, 1964−2017. This table presents GLS estimates of
Equation (10) for NYSE-listed common shares in time periods 1964−2017, 1964−1980, 1981−2000,
and 2011−2017. The dependent variable is the monthly risk-adjusted returns, in percentage
points, based on a Fama-French four-factor model. CCAM is the traditional Amihud’s liquidity
measure, and OCAM is Amihud’s measure after removing overnight price movements. Both
measures are constructed monthly, using daily absolute return per dollar observations from the
preceding twelve months. Liquidity premium, in basis points, is the product of the coefficient on
the liquidity measure and the measure’s average in the corresponding sample. Dividend yield,
DYDi,t−1, divides total dividend distributions between months t−12 and t−1 by the closing price
at the end of month t − 1. Momentum measures RET t−4

i,t−1 and RET t−12
i,t−5 , respectively, capture

compound returns over the preceding three months and the nine months before that. Return
volatility SDRETi,t−1 is given by the standard deviation of daily stock returns over the preceding
12 months. Market capitalization, Mi,t−12, is the product of shares outstanding and the closing
price at the end of the month, a year earlier. Both year-month and stock fixed effects are included.
Standard errors are clustered at both year-month and stock levels. Symbols ∗, ∗∗, and ∗∗∗ reflect
statistical significance at 10%, 5%, and 1% type one error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
CCAM 0.151∗∗ 0.120 0.264∗∗ 0.193

(0.063) (0.078) (0.120) (0.540)

OCAM 0.414∗∗∗ 0.406∗∗ 0.697∗∗ 0.330
(0.147) (0.180) (0.345) (1.134)

RET−4
−1 −0.079∗∗∗ −0.079∗∗∗ −0.145∗∗∗ −0.145∗∗∗ −0.103∗∗∗ −0.103∗∗∗ −0.084∗∗∗ −0.084∗∗∗

(0.011) (0.011) (0.017) (0.017) (0.014) (0.014) (0.024) (0.024)

RET−12
−5 −0.077∗∗∗ −0.076∗∗∗ −0.128∗∗∗ −0.122∗∗∗ −0.076∗∗∗ −0.075∗∗∗ −0.254∗∗∗ −0.254∗∗∗

(0.022) (0.022) (0.0340 (0.033) (0.029) (0.029) (0.044) (0.044)

ln(M) −0.98∗∗∗ −0.97∗∗∗ −1.98∗∗∗ −1.93∗∗∗ −1.53∗∗∗ −1.51∗∗∗ −1.36∗∗∗ −1.36∗∗∗

(0.05) (0.05) (0.14) (0.14) (0.12) (0.12) (0.14) (0.14)

SDRET −1.75∗∗∗ −1.81∗∗∗ −2.37∗∗∗ −2.60∗∗∗ −2.87∗∗∗ −2.94∗∗∗ −0.92 −0.92
(0.32) (0.32) (0.58) (0.58) (0.48) (0.49) (0.56) (0.56)

DYD −0.76∗∗∗ −0.76∗∗∗ −3.12∗∗∗ −3.12∗∗∗ −0.46∗∗∗ −0.45∗∗∗ −2.61∗∗∗ −2.61∗∗∗

(0.22) (0.22) (0.93) (0.93) (0.07) (0.07) (0.69) (0.69)

Observations 793,578 240,321 308,243 244,971

R2 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04

Premium (bps) 3.8 5.5 7.0 12.5 4.3 5.9 0.5 0.7

decomposition analysis presented in Table 7. We fit

CCAMit = θ0 + θ1OCAMit + Uit (11)
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and

OCAMit = ω0 + ω1CCAMit + Ũit (12)

using OLS. We then substitute the residuals Uit and Ũit in the second stage for CCAMit

and OCAMit, respectively, when estimating Equation (10). Table 9 reveals that OCAM not

only outperforms CCAM in explaining the cross-section of raw returns, it does so for the

the cross-section of risk-adjusted returns, and when we account for stock fixed effects and

potential auto-correlations in error terms.

Table 9: Panel regression estimates for pricings of orthogonally-decomposed measures,
NYSE-listed common shares, 1964−2017. This table presents GLS estimates of Equa-
tion (10) for NYSE-listed common shares in time periods 1964−2017, 1964−1980, 1981−2000,
and 2011−2017. The dependent variable is the monthly risk-adjusted return, in percentage points,
based on a Fama-French four-factor model. Independent variables are identical to those in Table 8,
expect for the measures of stock liquidity. U is substituted for CCAM , and reflects the residuals
from Equation (11). Ũ is substituted for OCAM , and reflects the residuals from Equation (12).
Both year-month and stock fixed effects are included. Standard errors are clustered at both
year-month and stock levels. Symbols ∗, ∗∗, and ∗∗∗ reflect statistical significance at 10%, 5%, and
1% type one error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
U 0.008 −0.154 0.266 −7.321

(0.142) (0.153) (0.261) (4.562)

Ũ 1.36∗∗∗ 1.11∗∗∗ 2.17∗∗ 15.80
(0.41) (0.38) (0.99) (9.57)

5 Information-driven overnight returns

We conclude our analysis by documenting the information-driven role of overnight price

movements in distorting CCAM from capturing liquidity properly. To do this, we exploit

cross-stock variation in the time distance between the last transaction of a typical trading day

and official close (4:00pm EST). We establish a very strong association between the extent of

non-trading before close and the disparity between CCAM and OCAM . Variation in non-

trading, which may reflect frictions such as lack of liquidity, large minimum tick size, etc., in-
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troduces heterogeneity in the stock of accumulated “overnight” information flow. The econo-

metrician observes the price implications of overnight information flow on a given day as the

difference between the close price and the open price of the next day.27 The extent of informa-

tion incorporated into prices outside of trading hours is more difficult to observe. We use the

time span between the last trade of a trading day and the close as a proxy for the accumulated

information that is not incorporated into closing price. Figure 4 illustrates the mapping be-

tween the extent of non-trading prior to close on a given trading day and the amount of accu-

mulated information that is expected to be impounded in price the following trading day(s).

 

 

Closet-1 Closet Opent 

Open-to-close 
return (OCR) 

Overnight return 

Opent-1 

Closet-1 Closet Opent 

Open-to-close 
return (OCR) 

Opent-1 

Last 
trade 

Stock B 

Stock A More 
information 

Overnight return 

Less 
information 

Figure 4: Illustration of non-synchronous trading and the extent of overnight infor-
mation accumulation. The figure illustrates the relationship between the extent of non-trading
before close on date t− 1 and the amount of information contained in overnight returns.

Using intraday transaction data from the TAQ database between 1993−2013, we measure

the time distance, in hours, between the last transaction and close each trading day. We

then average these distances every year for each stock to construct HTCiy (hours to close),

27When there is no closing price available, i.e., when there is not a “closing cross” that corresponds to
the final transaction at close, CRSP reports the midpoint of the best bid and ask prices at 4:00pm as the
“close price.” Importantly, this type of closing price which is not associated with trading may differ from
the price associated with the last transaction the same trading day. If anything, when such differences are
meaningfully large they introduce noise in our proxy of overnight information accumulation, i.e., the time
distance between the last transaction of the day and 4:00pm, attenuating our results. We observe that any
empirical analysis that relies closing prices is exposed to this sort of measurement error.
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which measures the average extent of non-trading before close in a given year.

Panel A: All stocks
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Figure 5: Evolution of the the extent of non-trading. This figure plots temporal changes
in the cross-stock distribution of HTC in the 1993-2013 period. For each stock i in year y, HTCiy

measures the average time distance, in hours, of the last transaction and close per trading day.
The year-specific quartiles of HTC are plotted against time. Panel A presents statistics in the
sample of all stocks, and Panel B presents the patterns for the sample of largest 800 stocks based
on market-capitalizations at the end of the preceding year.

Figure 5 shows that, pre-decimalization, non-trading exhibits remarkable variation in the

cross-section. For instance, in 1993, the first and third quartiles of the mean time distance
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between the last trade and close are roughly 6 and 28 minutes, respectively—the last transac-

tion was well before close for most stocks. This variation begins to vanish as decimalization is

implemented 1997−2001, and disappears after 2003, once automated trading dominates mar-

kets. These patterns mirror those for the cross-sectional distribution of ROC in Figure 2, sug-

gesting that variation in non-trading is related to variation in ROC (the extent of disparity

between CCAM andOCAM). Figure 6 plotsROCiy againstHTCiy, underscoring the strong

association between the extent of non-trading and differences between CCAM and OCAM :

the ratio ROC declines with HTC with a slope of roughly −1/3. Figures 5 and 6 reveal qual-

itatively identical patterns when we control for changes in sample composition by focusing

on the 800 largest stocks according to market-capitalizations at the end of the previous year.

Panel A: All stocks Panel B: 800 largest stocks
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Figure 6: Association between OCAM-to-CCAM ratio and HTC. The figure presents a
scatter plot of ROCiy against HTCiy in the 1993-2013 period. For each stock i in year y, ROCiy is
the ratio of open-to-close Amihud measure, OCAM , to the traditional Amihud measure, CCAM ;
and HTCiy measures the average time distance, in hours, of the last transaction and close (4:00pm
EST) per trading day.

To quantify the ability of HTC to explain variations in the disparity between CCAM

and OCAM , we add HTCiy to a regression of ROCiy on stock characteristics. The panel
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Table 10: Association between OCAM-to-CCAM ratio and stock characteristics,
including non-trading. This table presents panel regression estimates when ROCiy is regressed
on the natural logs of market-capitalization, ln(Mi,y−1), mean daily turnover, ln(TRi,y−1), and a
measure of non-trading, HTCiy in the 1964−2017 sample. For stock i in year y, HTCiy reflects
the average time, in hours, between the last transaction and close on a trading day. Specifications
differ in inclusion of HTC and in the sets of fixed effects introduced. Numbers in parentheses
reflect standard errors of estimates, clustered at both stock and year levels. Symbols ∗, ∗∗, and ∗∗∗

reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

Dep. Var. = ROC
ln(M) 0.006∗ −0.014∗∗∗ 0.024∗∗∗ −0.016∗∗∗ 0.005 −0.014∗∗∗ −0.003 −0.013∗∗∗

(0.003) (0.001) (0.004) (0.003) (0.004) (0.001) (0.002) (0.001)

ln(TR) 0.027∗∗∗ −0.020∗∗∗ 0.060∗∗∗ −0.025∗∗∗ 0.031∗∗∗ −0.011∗∗∗ 0.017∗∗∗ −0.010∗∗∗

(0.005) (0.003) (0.0060 (0.005) (0.006) (0.003) (0.004) (0.002)

HTC −0.300∗∗∗ −0.274∗∗∗ −0.307∗∗∗ −0.282∗∗∗

(0.010) (0.010) (0.008) (0.008)

Stock FE No Yes No Yes
Year FE No No Yes Yes

Adj-R2 0.05 0.36 0.44 0.63 0.09 0.40 0.50 0.68
Observations 21,446

regression includes stock fixed effects to account for unknown omitted stock attributes that

may explain cross-stock variation in ROC. We also use year fixed effects to account for

systematic temporal variation (e.g., varying sample composition) that may explain temporal

variation in ROC’s year-specific moments. Table 10 shows that HTC strongly explains the

variation in the disparity between CCAM and OCAM even after controlling for stock char-

acteristics and fixed effects. In fact, in presence of all other controls, the adjusted-R2 rises by

a striking 18 percentage points when we include HTC as an additional explanatory variable.

The negative coefficient on HTC indicates that longer periods of non-trading before close

are associated with greater disparities between CCAM and OCAM . Concretely, a one-hour

increase in the average duration of non-trading before close is associated with roughly a 0.3

(30 percentage point) decline in ROC—i.e., a 5 percentage point decline in ROC for each

additional 10 minutes of non-trading before close.28 The estimated slope coefficient is very

28Qualitatively similar findings obtain when we use HTC from the previous year to explain variation in
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close to the visually discerned slope of −1/3 from Figure 6.
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Figure 7: Evolution of the OCAM-to-CCAM ratio after controlling for non-trading.
The figure plots the temporal changes in the cross-stock distribution of the residuals from annual
cross-sections of ROCiy on HTCiy in the 1993-2013 period. For each stock i in year y, ROCiy is
the ratio of open-to-close Amihud measure, OCAM , to the traditional Amihud measure, CCAM ;
and HTCiy measures the average time distance, in hours, of the last transaction and close (4:00pm
EST) per trading day. The year-specific quartiles of residuals are plotted against time.

To provide additional evidence of the co-variation between ROC and HTC, we document

the temporal evolution of the cross-sectional variation in ROC after accounting for the varia-

tion explained byHTC. To do this, for each year, we obtain the residuals from cross-sectional

regressions of ROCiy on HTCiy, and then investigate the temporal evolution of the cross-

sectional distribution of these residuals. These cross-sectional regressions feature an average

R2 of 59.4% for the 1993−2013 period; and the average R2s for the sub-samples 1993−2002

and 2003−2013 are 77.6% and 40.7%, respectively, further underscoring the relevance of

information-driven price movements for our results. Figure 7 highlights the ability of HTC

to explain variation in ROC. In contrast to the large cross-sectional and temporal variations

in ROC highlighted in Figure 5, the residuals of ROC on HTC are concentrated around zero

(over half of the observations always fall between −0.05 and 0.05) and are remarkably stable

current year’s ROC.
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over time, indicating that much of ROC’s variation is due to variation in the extent of non-

trading near close, especially pre-decimalization and before automation of equity markets.29

6 Conclusion

Amihud’s (2002) liquidity measure (CCAM) has been widely used by researchers to study

the importance of stock liquidity for an array of financial economics issues, ranging from as-

set pricing to corporate finance. Its usage, in part, reflects the measure’s simple construction

using data that can be obtained for long histories and across different markets. The many in-

sights based on this measure make its precision crucial. Our paper develops and implements

simple improvements to this measure that require almost no additional data processing effort.

Our OCAM modification uses open-to-close returns, rather than close-to-close returns,

to address a time mismatch in the construction of CCAM . Our modified measure better

explains the cross-section of returns, revealing that liquidity premia are substantially larger

than previously understood. We provide strong evidence that OCAM better explains the

cross-section of expected (risk-adjusted) returns than CCAM . Liquidity premia based on

OCAM are double those based on CCAM . Including overnight returns in the Amihud

measure adds measurement error that sharply attenuates estimates of liquidity premia.

Finally, we exploit cross-sectional and temporal variation in the extent of non-trading

before close as a proxy for variation in information-driven price movements to gain insights

into the sources of differences between CCAM and OCAM . We find that this proxy explains

a large share of the cross-sectional variation in these differences. Overall, our paper high-

lights the importance of excluding information-driven price movements when constructing

measures of stock liquidity.

29Such stability of residuals does not obtain when one regresses ROC on year fixed effects only.
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A OCAM-CCAM disparity and price impacts of the

open auction

In this section, we address the possibility that OCAM might fail to align returns and trading

volumes by including the simultaneously-determined price and volume associated with the

“open auction.”30 We take a conservative approach, constructing three alternative versions

of OCAM that exclude price and trading volume in the first x minutes of trading, with

x ∈ {5, 10, 15}, using trade information from the remainder of the trading day as inputs for

our open-to-close Amihud measure of liquidity. For each trading day, instead of open price,

we use the price of the last transaction executed at most x minutes after 9:30am, only using

the open price if there is no transaction in that window. Accordingly, we subtract trading

volume realized in those x minutes from the aggregate daily volume. We then calculate

corresponding “open-to-close” returns and dollar volumes from the remainder of the trading

day to construct the daily proxy of price impacts, i.e., per dollar absolute open-to-close re-

turn. By averaging this proxy annually for each stock and each x ∈ {5, 10, 15}, we construct

alternative OCAMx
iy measures that exclude most open auction trades.31

Figure A.8 shows that trading dynamics within the first minutes of the trading day, which

includes the opening auction, minimally impact magnitudes of OCAM . The correlation co-

efficients between the natural log of OCAM and the alternative OCAMx measures always

exceed 96% (exceeding 98% except in the first two years of the sample), with an average

correlation of over 99%.32 As such, exclusion of trade and price data that may overlap with

30The TAQ database does not identify opening trades for most market centers, including the NYSE.
31We otherwise follow the construction of OCAMiy detailed in Section 2.1. Of note, we can only construct

these versions of OCAM post 1992, i.e., only once TAQ data became available.
32Average correlations between OCAM amd OCAMx, before taking logs, exceed 95%. Taking natural logs
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Figure A.8: Cross-sectional correlations between ln(OCAM) and ln(OCAMx) by
year. The figure plots the cross-stock correlation coefficients between ln(OCAM) and
ln(OCAMx), with x ∈ {5, 10, 15} by year. OCAMx is an alternative version of OCAM
where open price is substituted by the last transaction price within x minutes after 9:30am
on the same day, and measures of daily volume that exclude trading volume realized within
the first x minutes of trading. Cross-stock correlations of OCAM versus each of its three
alternative versions are calculated annually in the 1993–2013 period.

opening trades appear to have negligible effects on OCAM quantities, revealing that the

open auction does not drive variation in our measure.

B Liquidity premia on NYSE- and AMEX-listed com-

mon shares 1964-2017.

This section extends the analysis of Amihud (2002) for the 1964−2017 period, expanding the

sample to include both NYSE- and AMEX-listed common shares. Table B.8 reinforces our

findings presented in Table 6. Liquidity premia based on OCAM are approximately twice

of these annual measures addresses non-linearities at the distribution tails. Such non-linearities likely reflect
data errors that give rise to a few extreme price/volume observations at the daily level. For instance, in a few
cases, we excluded from the sample trading days with reported trading volume in the first x minutes that ex-
ceeded the daily trading volume reported by CRSP. Other data errors are not as easy to identify and exclude.
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those based on CCAM . Adding AMEX-listed stocks, which are considered to be less liquid

than NYSE-listed stocks, results in liquidity premia for the sample of NYSE- and AMEX-

listed firms that are nearly double those for the sample of NYSE-listed stocks. Moreover,

Table B.8 shows that weighting observations using the previous month’s gross returns, as

proposed by Asparohouva et al. (2010), only leads to marginal declines in liquidity premia

estimates, leaving results qualitatively unchanged.

C Liquidity premia on NASDAQ-listed common shares

1993-2017.

This section extends the analysis of Amihud (2002) to NASDAQ-listed common shares for the

1993−2017 period, contrasting outcomes with those for NYSE- and AMEX-listed common

shares using CRSP for opening prices rather than GFD. Table C.8 performs Fama-MacBeth

regressions similar to Table 5, reinforcing our earlier findings. In particular, once more,

liquidity premia based on OCAM are roughly double those based on CCAM . Moreover,

liquidity premia for NASDAQ-listed firms are four to five times larger than those for NYSE

and AMEX-listed stocks. Further, for this sample period, opening prices are available on

CRSP, and the analysis confirms our findings regardless of whether we use CRSP or GFD for

opening prices. This underscores the relevance of our analysis for most researchers who will

be using publicly available data. Furthermore, it provides evidence that we can trust our

findings using GFD prices for earlier dates for which other sources of opening prices do not

currently exist. Finally, Table C.8 establishes robustness of our findings to upward biases

in point estimates due to noisy prices. The qualitative differences in liquidity premia based
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Table B.8: Fama-MacBeth estimates of monthly returns on stock characteristics,
NYSE- and AMEX-listed common shares, 1964−2017. This table presents Fama-MacBeth
estimates of Equation (7) for NYSE- and AMEX-listed common shares in time periods 1964−2017,
1964−1980, 1981−2000, and 2011−2017. The dependent variable is the monthly stock return in
percentage points. CCAM is the traditional Amihud’s liquidity measure, and OCAM is Amihud’s
measure after removing overnight price movements. We divide each CCAMiy and OCAMiy

observation by its respective sample mean across stocks in year y, thereby centering each measure
to have a mean of one. βmkt is market beta estimated across ten size portfolios using daily
observations from the last calendar year. R100 is the compound return on a stock in the last
100 days of the previous calendar year, and R100Y R is the compound return over the remaining
trading days in the last calendar year. ln(M) is the natural log of market capitalization at the end
of the previous calendar year. SDRET is the standard deviation of daily returns over the previous
calendar year. DYD is the ratio of total cash dividend distribution over the previous calendar
year to the closing price at the end of that year, or dividend yield. Newey-West standard errors
using two lags are reported in parentheses. Symbols ∗, ∗∗, and ∗∗∗ reflect statistical significance at
10%, 5%, and 1% type one error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
βmkt 0.493 0.665 0.068 0.347 0.658 0.819 0.724 0.802

(0.284) (0.279) (0.415) (0.4150 (0.613) (0.599) (0.358) (0.360)

CCAM 0.074∗∗∗ 0.106∗∗ 0.095∗∗∗ 0.015
(0.017) (0.044) (0.021) (0.015)

OCAM 0.115∗∗∗ 0.202∗∗∗ 0.118∗∗∗ 0.025
(0.023) (0.060) (0.027) (0.022)

R100 0.438∗∗ 0.435∗∗ 0.617∗ 0.615∗ 0.793∗∗∗ 0.790∗∗∗ −0.158 −0.164
(0.206) (0.205) (0.336) (0.3370 (0.248) (0.248) (0.465) (0.464)

R100Y R 0.229∗∗∗ 0.237∗∗∗ 0.316∗∗ 0.340∗∗ 0.384∗∗∗ 0.388∗∗∗ −0.040 −0.042
(0.080) (0.080) (0.136) (0.138) (0.124) (0.124) (0.154) (0.155)

ln(M) −0.114∗∗∗ −0.118∗∗∗ −0.194∗∗∗ −0.192∗∗∗ −0.052 −0.068 −0.107∗∗∗ −0.102∗∗∗

(0.029) (0.027) (0.054) (0.048) (0.050) (0.048) (0.039) (0.040)

SDRET −1.420∗∗∗ −1.600∗∗∗ −0.467 −0.843 −2.287∗∗∗ −2.427∗∗∗ −1.355∗∗ −1.383∗∗

(0.331) (0.336) (0.618) (0.632) (0.487) (0.497) (0.618) (0.624)

DYD 0.587 0.494 2.022 1.720 0.192 0.189 -0.385 -0.374
(0.625) (0.606) (1.899) (1.839) (0.310) (0.306) (0.415) (0.421)

on CCAM and OCAM are unaffected when we perform WLS estimation with the previous

month’s gross returns serving as weights, following Asparouhova et al. (2010).
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Table B.8: Fama-MacBeth WLS estimates of monthly returns on stock characteristics,
NYSE- and AMEX-listed common shares, 1964−2017. This table presents Fama-MacBeth
estimates of Equation (7) for NYSE- and AMEX-listed common shares in time periods 1964−2017,
1964−1980, 1981−2000, and 2011−2017. Following Asparouhova et al. (2010), observations are
weighted using previous month’s gross (one plus) returns. The dependent variable is the monthly
stock return in percentage points. CCAM is the traditional Amihud’s liquidity measure, and
OCAM is Amihud’s measure after removing overnight price movements. We divide each CCAMiy

and OCAMiy observation by its respective sample mean across stocks in year y, thereby centering
each measure to have a mean of one. βmkt is market beta estimated across ten size portfolios using
daily observations from the last calendar year. R100 is the compound return on a stock in the last
100 days of the previous calendar year, and R100Y R is the compound return over the remaining
trading days in the last calendar year. ln(M) is the natural log of market capitalization at the end
of the previous calendar year. SDRET is the standard deviation of daily returns over the previous
calendar year. DYD is the ratio of total cash dividend distribution over the previous calendar
year to the closing price at the end of that year, or dividend yield. Newey-West standard errors
using two lags are reported in parentheses. Symbols ∗, ∗∗, and ∗∗∗ reflect statistical significance at
10%, 5%, and 1% type one error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
βmkt 0.591∗∗ 0.737∗∗∗ 0.245 0.484 0.752 0.879 0.745∗∗ 0.821∗∗

(0.281) (0.277) (0.425) (0.426) (0.602) (0.583) (0.355) (0.364)

CCAM 0.064∗∗∗ 0.091∗∗ 0.081∗∗∗ 0.016
(0.017) (0.043) (0.022) (0.016)

OCAM 0.098∗∗∗ 0.172∗∗∗ 0.098∗∗∗ 0.026
(0.023) (0.058) (0.028) (0.023)

R100 0.536∗∗∗ 0.532∗∗∗ 0.717∗∗ 0.713∗∗ 0.928∗∗∗ 0.922∗∗∗ −0.104 −0.109
(0.202) (0.202) (0.330) (0.331) (0.242) (0.241) (0.457) (0.456)

R100Y R 0.271∗∗∗ 0.278∗∗∗ 0.357∗∗ 0.379∗∗∗ 0.455∗∗∗ 0.458∗∗∗ −0.031 −0.034
(0.080) (0.081) (0.139) (0.141) (0.126) (0.125) (0.151) (0.152)

ln(M) −0.104∗∗∗ −0.108∗∗∗ −0.178∗∗∗ −0.179∗∗∗ −0.046 −0.060 −0.099∗∗ −0.093∗∗

(0.029) (0.027) (0.054) (0.049) (0.050) (0.048) (0.041) (0.042)

SDRET −1.438∗∗∗ −1.597∗∗∗ −0.560 −0.897 −2.332∗∗∗ −2.448∗∗∗ −1.259∗∗ −1.291∗∗

(0.328) (0.333) (0.611) (0.624) (0.484) (0.494) (0.611) (0.616)

DYD 0.745 0.661 2.444 2.174 0.264 0.252 -0.380 -0.363
(0.620) (0.601) (1.885) (1.824) (0.296) (0.291) (0.418) (0.423)

D Liquidity premia on non-common shares 1964-2017.

This section extends the analysis of Amihud (2002) for the 1964−2017 period, limiting the

sample to NYSE-listed stocks that are not considered common shares. We estimate Equa-
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Table C.8: Fama-MacBeth estimates of monthly returns on stock characteristics,
NYSE- and AMEX-listed versus NASDAQ-listed common shares, 1993−2017 (CRSP
data only). This table contrasts Fama-MacBeth estimates of Equation (7) for NYSE- and AMEX-
listed common shares in the 1993−2017 period versus those for NASDAQ-listed counterparts. The
dependent variable is the monthly stock return in percentage points. CCAM is the traditional
Amihud’s liquidity measure, and OCAM is Amihud’s measure after removing overnight price
movements. We divide each CCAMiy and OCAMiy observation by its respective sample mean
across stocks in year y, thereby centering each measure to have a mean of one. βmkt is market beta
estimated across ten size portfolios using daily observations from the last calendar year. R100 is the
compound return on a stock in the last 100 days of the previous calendar year, and R100Y R is the
compound return over the remaining trading days in the last calendar year. ln(M) is the natural
log of market capitalization at the end of the previous calendar year. SDRET is the standard
deviation of daily returns over the previous calendar year. DYD is the ratio of total cash dividend
distribution over the previous calendar year to the closing price at the end of that year, or dividend
yield. Newey-West standard errors using two lags are reported in parentheses. Symbols ∗, ∗∗, and
∗∗∗ reflect statistical significance at 10%, 5%, and 1% type one error, respectively. Estimates are
carried out using both ordinary least squares and weighted least squares, with lagged monthly gross
(one plus) return used as weights, to correct for biases identified by Asparouhova et al. (2010).

OLS WLS
NYSE & AMEX NASDAQ NYSE & AMEX NASDAQ

βmkt 0.701 0.858∗ −0.253 −0.112 0.682 0.809 −0.318 −0.175
(0.442) (0.427) (0.298) (0.290) (0.435) (0.424) (0.292) (0.286)

CCAM 0.023 0.085∗∗ 0.017 0.073∗∗

(0.014) (0.032) (0.014) (0.033)

OCAM 0.048∗∗ 0.178∗∗∗ 0.037∗ 0.160∗∗∗

(0.020) (0.044) (0.020) (0.044)

R100 −0.006 −0.012 −0.021 −0.031 0.078 0.076 0.034 0.026
(0.329) (0.327) (0.242) (0.243) (0.326) (0.323) (0.234) (0.235)

R100Y R 0.064 0.061 0.010 0.011 0.098 0.095 0.015 0.016
(0.123) (0.123) (0.042) (0.042) (0.124) (0.123) (0.041) (0.041)

ln(M) −0.059 −0.053 −0.011 0.006 −0.060 −0.054 0.002 0.016
(0.040) (0.040) (0.045) (0.046) (0.040) (0.039) (0.045) (0.046)

SDRET −1.164∗∗ −1.252∗∗ −1.092∗∗ −1.265∗∗ −1.172∗∗ −1.241∗∗ −1.227∗∗ −1.391∗∗∗

(0.492) (0.500) (0.434) (0.451) (0.487) (0.495) (0.434) (0.451)

DYD −0.148 −0.155 −0.015 0.024 −0.174 −0.177 −0.169 −0.134
(0.323) (0.325) (0.615) (0.620) (0.324) (0.327) (0.597) (0.602)

tion (7) only including stocks whose share codes differ from 10 and 11 in the CRSP data

base. Table D.8 shows that significant liquidity premia among non-common share stocks

obtain in the post-decimalization time period. This analysis shows the reason we find sig-
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nificant liquidity premia across all NYSE-listed stocks in the 2001−2017 period (Table 5),

but not when we focus on common shares (Table 6). Additionally, our findings using non-

common share stocks demonstrate the robustness of our findings that liquidity premia based

on OCAM are significantly larger that those found based on CCAM . Underestimates of

liquidity premia by CCAM do not just reflect a quality that is specific to common shares.
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Table D.8: Fama-MacBeth estimates of monthly returns on stock characteristics,
NYSE-listed non-common shares, 1964−2017. This table presents Fama-MacBeth estimates
of Equation (7) for NYSE-listed stocks with CRSP share codes that differ from 10 and 11 in
time periods 1964−2017, 1964−1980, 1981−2000, and 2011−2017. The dependent variable is the
monthly stock return in percentage points. CCAM is the traditional Amihud’s liquidity measure,
and OCAM is Amihud’s measure after removing overnight price movements. We divide each
CCAMiy and OCAMiy observation by its respective sample mean across stocks in year y, thereby
centering each measure to have a mean of one. βmkt is market beta estimated across ten size
portfolios using daily observations from the last calendar year. R100 is the compound return on
a stock in the last 100 days of the previous calendar year, and R100Y R is the compound return
over the remaining trading days in the last calendar year. ln(M) is the natural log of market
capitalization at the end of the previous calendar year. SDRET is the standard deviation of daily
returns over the previous calendar year. DYD is the ratio of total cash dividend distribution
over the previous calendar year to the closing price at the end of that year, or dividend yield.
Newey-West standard errors using two lags are reported in parentheses. Symbols ∗, ∗∗, and ∗∗∗

reflect statistical significance at 10%, 5%, and 1% type one error, respectively.

1964−2017 1964−1980 1981−2000 2001−2017
βmkt 0.276 0.184 0.341 −0.498 0.460 0.881 0.003 0.051

(0.620) (0.629) (1.700) (1.755) (0.848) (0.816) (0.265) (0.264)

CCAM 0.089∗∗ 0.220∗∗ 0.038 0.020∗∗

(0.036) (0.108) (0.028) (0.010)

OCAM 0.133∗∗ 0.336∗∗ 0.042 0.039∗∗

(0.052) (0.154) (0.046) (0.015)

R100 0.810∗∗ 0.754∗∗ 0.711 0.575 1.086∗∗ 1.065∗∗ 0.590∗ 0.571∗

(0.326) (0.322) (0.806) (0.794) (0.4990 (0.493) (0.302) (0.301)

R100Y R 0.616∗∗∗ 0.716∗∗∗ 1.250∗∗ 1.588∗∗ 0.407 0.391 0.238 0.239
(0.232) (0.250) (0.610) (0.672) (0.280) (0.282) (0.254) (0.254)

ln(M) 0.034 0.009 0.103 0.047 0.007 −0.017 −0.002 0.002
(0.048) (0.046) (0.1320 0.125 (0.063) (0.061) (0.034) (0.034)

SDRET −0.860 −0.983∗ −0.604 −0.953 −1.615∗ −1.643∗ −0.246 −0.259
(0.548) (0.560) (1.136) (1.187) (0.906) (0.913) (0.775) (0.776)

DYD −1.766 −2.365∗∗ −2.835 −4.797 −0.729 −0.706 −1.914∗∗ −1.901∗∗

(1.168) (1.196) (3.459) (3.551) (0.857) (0.827) (0.997) (1.009)
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E Corrected Amihud’s measure and alternative high-

frequency measures of liquidity

Here, we show that the improvements in pricing of Amihud’s measure due to removing

overnight price movements result in more precise measures of liquidity in the cross-section.

To do this, we examine the pair-wise correlations of both CCAM and OCAM vis à vis other

commonly-used measures of liquidity as benchmarks. We examine cross-stock correlations

at annual and monthly frequencies depending on the frequency at which the alternative

measures are available.

We use measures of effective trading costs developed by Hasbrouck (2009), namely, two

versions of moments estimates of costs and Gibbs estimates of costs, to investigate how

closely the CCAMiy and OCAMiy measures correspond with measures of trading costs at

annual frequencies in the 1964−2003 period.33 Each year, we calculate the cross-stock cor-

relations between each version of Amihud’s measure and the cost estimates, and then report

the average correlation coefficient across all years. We perform an analogous analysis for

the monthly measures CCAMit and OCAMit to examine them against trade-time measures

of liquidity (BBDit and WBBDit), size-weighted relative quoted spreads (PSPit), and es-

timates of Kyle’s lambda (LAMBDA) for the period 2001−2014.34 Table E.8 shows that

OCAM displays notably higher correlations with all alternative liquidity measures than

CCAM , reinforcing that OCAM is a more accurate measure of stock liquidity.

33Annual data for this time period are available for download at Professor Joel Hasbrouck’s website:
http://people.stern.nyu.edu/jhasbrou/Research/GibbsEstimates2005/.

34The monthly measures are obtained from data used in Barardehi et al. (2019).
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Table E.8: CCAM and OCAM vs. other standard measures of stock liquidity. This
table presents average cross-sectional correlations between each CCAM and OCAM vis à vis
other high-frequency measures of stock liquidity. Panel A presents correlations against annual
measures of effective costs calculated by Hasbrouck (2006). cMdmLogiy and cMdmLogziy are
two version of Roll’s measure of daily return auto-correlations, respectively, reflecting whether
missing daily return observations are dropped or replace by zero. cLogMeaniy reflects Gibbs
estimates using a market-factor model applied to CRSP closing prices and dividends. Every year,
correlations between each measure with CCAMiy or OCAMiy are calculated in the 1964−2003
period, and the averages are reported. Panel B presents correlations against monthly measures
of stock liquidity used in Barardehi et al. (2019). BBDit and WBBDit measure monthly
simple and volume-weighted averages of per-dollar price impacts associated with trad-times of
fixed-dollar values. PSPit is the monthly time-weighted average of bid-ask spread-over-mid-points.
LMABDAit is the monthly estimates of Kyle’s λ. Every month, correlations between each measure
with CCAMit or OCAMit are calculated in the 2001−2012 period, and the averages are reported.

Correlations vs. Hasbrouk’s estimates of effective costs 1964-2003
Time period Measure cMdmLog cMdmLogz cLogMean

1964−2003
CCAM 0.39 0.38 0.53
OCAM 0.53 0.49 0.66

1964−1980
CCAM 0.35 0.37 0.55
OCAM 0.49 0.46 0.67

1981−2003
CCAM 0.42 0.39 0.51
OCAM 0.55 0.51 0.65

Correlations vs. Barardehi et al.’s measures 2001−2014
Measure BBD WBBD PSP LAMBDA
CCAM 0.77 0.76 0.72 0.71
OCAM 0.82 0.81 0.77 0.75
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