
Systemic Portfolio Diversification ∗

Agostino Capponi† Marko Weber‡

June 1, 2019

Abstract

We study the implications of fire-sale externalities on balance sheet composition. Banks

select their asset holdings to minimize expected execution costs triggered by the need to com-

ply with regulatory leverage requirements. Our analysis highlights the fundamental trade-off

between asset diversification at the level of each individual bank and systemic diversification.

While sacrificing diversification benefits to reduce portfolio commonality increases the bank’s

idiosyncratic probability of liquidation, it also lowers the endogenous probability of a costly

widespread sell-off. We show that leverage heterogeneity is socially beneficial because it am-

plifies banks’ incentives in achieving systemic diversification. The socially optimal systemic

diversification can be attained through a tax on banks’ balance sheet concentration on illiquid

assets.
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1 Introduction

The classical paradigm in financial investment prescribes asset diversification as a means to min-

imize risk. Standard pre-crisis policies argued for the unlimited benefits of diversification, with

little emphasis on balancing those against the downside risks of contagion. However, the global

2007-2009 financial crisis highlighted potential vulnerabilities resulting from balance sheet intercon-

nectedness of financial institutions: in a crisis, investors exposed to the same shocked asset may be

forced to simultaneously liquidate their positions in this asset. The liquidation of an asset carried

out simultaneously by many financial institutions exacerbates losses for all investors involved in the

sell-off.
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Prior literature has analyzed the vast amount of banks deleveraging that occurred during the

crisis, and studied the feedback between tightening liquidity and falling asset prices (e.g., Brunner-

meier and Pedersen (2008), Khandani and Lo (2011), Manconi et al. (2012)). Fire-sale spillovers

due to asset commonality among banks have been recognized as a major source of systemic risk

(e.g., Allen and Carletti (2013), Billio et al. (2012)). Concerns about fire-sale externalities led, for

example, to the initiation of asset purchase programs under TARP by the U.S. Treasury and to the

emergency cash bailout of Bear Stearns by J.P.Morgan Chase and the New York Federal Reserve

in March, 2008.1 All this indicates the importance of balancing asset diversification (optimal in

isolation) with the diversification of liquidation risk across banks.

A financial firm may mitigate the idiosyncratic risk of each asset by holding a diversified port-

folio. This reduces the portfolio’s variance, and therefore the firm’s individual probability of asset

liquidation. At the system level, instead, “systemic” diversification, i.e., the reduction of portfo-

lio overlaps across different institutions, lowers the likelihood of concurrent asset liquidation and,

therefore, of costly widespread sell-offs. Figure 1 illustrates this trade-off, and in particular how

portfolio commonality may lead to a higher probability of simultaneous asset liquidation.

We consider a financial system consisting of banking institutions subject to a regulatory leverage

constraint: if after an initial market shock the asset value of a bank falls and its resulting leverage

exceeds a given threshold, then the bank is required to liquidate assets to return to its regulatory

requirement. Asset liquidation is costly, and imposes a downward pressure on prices proportional

to the quantity that is being liquidated. A bank is then exposed to cross-agent externalities if its

portfolio significantly overlaps with the portfolios of other banks facing similar constraints. Each

bank chooses its asset holdings ex-ante, i.e., before the market shock is realized, accounting for

potential vulnerability to fire-sale spillovers. Reducing portfolio overlapping lowers the negative

externalities resulting from cross holdings.

The proposed model highlights the mechanism through which systemic risk affects the banks’

portfolio choice, and quantifies the externalities imposed by the banks on the system. We argue

that systemic risk from fire-sale spillovers should play an important role on the banks’ balance sheet

decisions: a portfolio that is optimal for an agent in isolation may be far from optimal if cross-

agent externalities are accounted for. Our analysis shows that even though banks reduce portfolio

commonality to mitigate the risk of fire-sale spillovers, they do not reduce it enough relative to

the social optimum. This result is a consequence of the fact that each bank only accounts for the

costs that other banks impose on it, but disregards the externalities imposed on the rest of the

system through its liquidation actions. Our study allows to assess the efficacy of welfare-enhancing

policies. Any regulatory intervention based on the banks’ current balance sheet allocations is subject

to the Lucas critique, as banks may adapt to the new regulatory environment in unexpected and,

potentially, socially damaging ways. Hence, to anticipate the feedback effects following regulatory

1The provision of liquidity by the Federal Reserve was taken to avoid a potential resale of nearly U.S. $210 billion
of Bear Stearns’ assets. The Chairman of the Fed, Ben Bernanke, defended the bail-in by stating that Bear Stearns’
bankruptcy would have affected the economy, causing a “chaotic unwinding” of investments across the U.S. markets
and a further devaluation of other securities across the banking system.
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intervention, policies should account for the banks’ optimal response, i.e., their equilibrium asset

allocations. Monetary policy tools such as asset purchase programs run by government or regulatory

bodies may have the unintended consequence of incentivizing banks to hold excessively correlated

financial exposures. For example, Acharya et al. (2010) argue that providing unconditional liquidity

support to banks decreases their incentives to hold a liquid portfolio. We show that imposing a tax

on the banks’ balance sheet interconnectedness may align the private optimum with the socially

optimal asset allocation. The externality that a bank imposes on the system is increasing in the size

of its balance sheet, the liquidity of its asset holdings, its leverage ratio, and the illiquidity-weighted

portfolio overlap with other banks. This externality, and the corresponding Pigovian tax, is related

to the systemicness of a bank, as defined in Greenwood et al. (2015): the tax is a weighted average

of a modified version of the bank’s systemicness over different asset shocks.2

Our model predicts that a higher heterogeneity in the financial system reduces the expected

aggregate liquidation costs. Even if each bank were to ignore fire-sale spillovers, it would still select

the portfolio based on its leverage ratio because the latter determines the incentives of holding liquid

assets. Therefore, banks with different leverage hold different portfolios. When banks account for

fire-sale spillovers, the diversity in banks’ portfolios becomes even higher because each bank runs

away from the externalities imposed by the others. From a policy perspective, these findings suggest

that mergers of banks may have unintended consequences, and increase the fragility of the system.

This is because consolidation reduces the level of heterogeneity in the system and, as a result,

the possibility of diversifying fire-sale risk across banks. While a single large bank may optimally

choose its asset allocation, it may not be able to diversify its liquidation risk. By contrast, in a

system of two heterogeneous banks, each bank can adjust its portfolio to lower the likelihood of

joint asset liquidation.

A growing financial literature analyzes the aggregate vulnerability of the empirically observed

banking system to fire-sale risk (e.g Greenwood et al. (2015),Capponi and Larsson (2015), and

Duarte and Eisenbach (2018)). Unlike these studies, we do not take banks’ portfolios as exogenously

given. We frame the decision making problem of banks’ portfolio selection as a game in which each

bank minimizes the expected value of its own asset liquidation costs. Each bank’s allocation decision

affects the likelihood and magnitude of forced asset liquidations and the bank’s contribution to

systemic risk. We show that this game may be casted as a potential game, and therefore a Nash

equilibrium can always be guaranteed to exist under mild conditions on the distribution of the

initial market shock. There are multiple economic forces that affect the Nash equilibrium of the

game. First, portfolio diversification reduces each bank’s likelihood of forced liquidation; second,

highly leveraged banks have a stronger incentive to hold liquid assets as they are more vulnerable

to fire sales; third, banks seek to reduce portfolio commonality to limit fire-sale spillover costs.

Because of the intricate patterns of interactions of these three forces, the game may admit multiple

2In the U.S., banks file the form FR Y-9C every quarter with the Federal Reserve, a report that collects their
consolidated balance sheet data. This information allows a regulator to monitor common exposures in the financial
system, infer –after accounting for size and leverage ratio– each bank’s contribution to systemic risk, and impose a
tax that makes the bank internalize such a contribution.
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Figure 1: An economy consisting of two banks and two assets. Z1 and Z2 are the returns of
assets 1 and 2, respectively. Solid lines represent the portfolio composition of each bank. A bank
is forced to liquidate assets if its portfolio return causes leverage constraint to be breached. The
horizontal lines identify the asset returns for which bank 1 liquidates assets, and the vertical lines
the asset returns for which bank 2 liquidates assets. Left panel: both banks hold the same perfectly
diversified portfolio, hence –depending on the shock on the assets– either they are both forced to
liquidate assets, or neither bank is. Right panel: banks hold different portfolios, as a consequence,
the region in which both banks liquidate simultaneously is smaller.

equilibria.3 We show that a financial system that is sufficiently homogeneous in both the banks’

characteristics (size and leverage) and the assets’ liquidity levels admits a unique equilibrium. In

such a setting, the unique equilibrium is that the more leveraged bank adjusts its position towards

the more liquid asset.

Literature Review

Existing literature has analyzed the implications on asset pricing and financial stability resulting

from banks’ leverage management. Adrian and Shin (2010) are the first to provide empirical evi-

dence that banks react to asset price changes by actively managing their balance sheets. Greenwood

et al. (2015) introduce a model to explain the propagation of shocks in a system of leverage-targeting

banks with common asset holdings. They focus on the first-order effects of fire-sale losses caused

by spillovers, and measure the contribution of each bank to the fragility of the system: a highly

connected bank, i.e., a bank that holds assets to which many other banks have large exposures,

is a source of vulnerability for the system. Capponi and Larsson (2015) generalize their analysis

and introduce the systemicness matrix to show that higher-order effects of fire-sale externalities

3Consider a system with two assets and two banks, and assume that the more leveraged bank is significantly
smaller. In one equilibrium, the more leveraged bank holds a larger position in the liquid asset than the bigger bank,
because its incentive to hold the liquid asset is stronger. In another equilibrium, the lowly leveraged bank, which is
dominant in the system because of its size, adjusts its portfolio towards the liquid asset. The smaller bank, whose
incentive to run away from the externality imposed by the bigger bank now dominates the incentive to hold the liquid
asset, increases its position in the illiquid asset.
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can be substantial during periods of financial distress. Duarte and Eisenbach (2018) empirically

study the historical vulnerability to fire-sale spillovers of American banks, including the periods

before and after the financial crisis. “Illiquidity concentration”, i.e., the concentration of illiquid

assets among large and levered banks, is shown to have increased significantly up to early 2007.

This measure demonstrates the importance of balance sheet linkages in the propagation of market

shocks, and corroborates our claim that large banks should account for the portfolio composition

of other systemically important banks. Cont and Wagalath (2013) show that in the event of large

market shocks, distressed market participants jointly liquidate assets. These sell-offs result in spikes

of correlation, reducing the benefits of asset diversification when it is most needed. In all these

studies, banks are assumed to be endowed with a given portfolio and liquidate assets in response

to an exogenous shock. Our study considers instead banks that are strategic in the choice of their

portfolios.

Our work is also related to existing literature on counterparty risk networks. Acemoglu et al.

(2015a) study the resilience to shocks of different network architectures. They conclude that a com-

pletely interconnected system, i.e., in which all institutions completely diversify their counterparty

credit risk, may increase the fragility of the system if a large shock hits the network. A similar

behavior is observed in the network of portfolio holdings, where two institutions share a link if their

portfolios overlap: in an interconnected network multiple agents hold similar portfolios and, after a

large market shock, they may all be forced to simultaneously sell assets, exacerbating the costs for

all agents participating in the sell-off. While Acemoglu et al. (2015a) analyze an ex-post scenario

where shocks have already hit the balance sheet structures of banks in the network, we consider an

ex-ante scenario where the shock is yet to occur. Our network of portfolio holdings is endogenously

determined by the equilibrium choice of banks’ asset holdings.

Farboodi (2017) and Acemoglu et al. (2015b) consider endogenous intermediation and highlight

the inefficiencies arising from overexposure to counterparty risk by banks which make risky invest-

ment. Our work shows that, even in the absence of direct credit linkages, banks are exposed to

excessive systemic risk because in equilibrium they hold portfolios that are too similar.

Other related studies include Acharya and Yorulmazer (2007), who show that banks may find

it optimal to invest in highly correlated assets in anticipation of a bailout triggered by many

simultaneous failures; and Farhi and Tirole (2012), who support Acharya and Yorulmazer (2007)’s

findings by showing that safety nets can provide perverse incentives and induce correlated behavior

that increases systemic risk. Unlike these studies, we focus on aggregate vulnerability rather than

defaults, and do not model default resolution policies such as bailouts.

Our work is also related to the study by Wagner (2011) on the trade-off between diversity and

diversification in financial exposures. While his model also explores the implications of joint asset

liquidation on the agents’ portfolio allocations, our focus on a finite number of systemically impor-

tant financial institutions requires the design of a different framework and leads to considerably

different conclusions. In our model, it is heterogeneity that drives banks to reduce their portfolio

overlaps. In a homogeneous setup, banks would hold the same portfolio. In contrast, in the model
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by Wagner (2011) even if agents are identical their portfolios are not. This is because he considers

a continuum of agents, each of negligible size, and therefore each agent is not subject to any liqui-

dation cost if it sells assets while all others do not. Furthermore, because in our model agents are

large, it is possible to quantify the externalities that each bank imposes on the rest of the system

and analyze policy remedies.4

Our study on the efficacy of a tax on systemic risk is related to the work by Acharya et al.

(2017). They construct an aggregate indicator for the occurrence of a systemic crisis, which is

exogenously specified in terms of total assets and capital of the banks in the system. Each bank is

charged a tax in the amount equal to the share of expected aggregate loss it generates during this

crisis scenario. Different from their top-down approach, we infer the tax directly from the banks’

balance sheet information: the tax amount is equal to the endogenous cost that each bank imposes

on the rest of the system due to simultaneous asset liquidation, rather than being determined via

an exogenously defined systemic event.

The rest of the paper is organized as follows. We introduce the model primitives and the

economic assumptions in Section 2. We describe the game theoretical model of strategic banks’

holdings in Section 3. We solve for the Nash equilibrium and discuss its properties in Section 4.

We study the social planner problem and discuss policy implications in Section 5. We discuss

operational challenges in Section 6. Section 7 concludes the paper. Technical proofs are deferred

to the Appendix.

2 Model Setup

We consider a two-period economy consisting of K assets and N banks. Let di be the initial debt

of bank i, and ei its initial equity. Denote by wi := di + ei the total initial asset value of bank i.

The leverage ratio of bank i is

λi :=
di
ei
,

which may be equivalently rewritten as di = λi
1+λi

wi. Each bank is required to maintain its leverage

below a regulatory threshold λM , i.e., λi ≤ λM for every i.

At date 1, each bank chooses its asset allocations. Denote by πi,k the weight of asset k in bank

i’s portfolio. Portfolio weights are positive and satisfy the relation
∑K

k=1 πi,k = 1 for i = 1, · · · , N .

At date 2, each asset k is subject to a return shock Zk. Hence, the return of bank i’s portfolio

is Ri = πTi Z, where πi := (πi,k)1≤k≤K is the vector of bank i’s weights and Z := (Zk)1≤k≤K is the

vector of shocks. Ex-post, the leverage ratio of bank i is

λposti =
di

wi(1 +Ri)− di
.

Assumption 2.1. After a shock, banks that violate the leverage requirement liquidate the minimum

4Other studies have considered different settings to investigate the dangers and social costs of asset diversification,
e.g., Shaffer (1994), Acharya (2009), Ibragimov et al. (2011).
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amount of assets needed to adjust their leverage to the regulatory threshold.

If λposti ≥ λM , then bank i needs to sell assets and use the cash proceeds from the sale xi to

repay its debt. To comply with the leverage requirement, xi needs to satisfy di−xi
wi(1+Ri)−di = λM .

The focus of the paper is on large liquidity shocks, and it is well known that raising equity during

distressed market conditions is prohibitively costly. Similarly, selling assets in a depressed market

environment is difficult. Nevertheless, empirical evidence provided by Adrian and Shin (2008) –

see the scatter plot in Figure 6 therein– indicates that firms manage leverage primarily through

adjustments in the size of debt (e.g. through asset disposals), leaving equity unchanged, rather

than through direct changes in equity.5

We remark that Greenwood et al. (2015) assume that banks target their leverage, i.e., that they

immediately sell assets to return to their initial leverage ratio. In our model it is only the assets

required by the bank to meet the leverage constraint that are liquidated at discounted prices. A

bank that intends to restore its initial leverage ratio may do so on a longer time scale to incur lower

execution costs.

Assumption 2.2. Banks liquidate assets proportionally to their initial allocation.

As in Greenwood et al. (2015) and Duarte and Eisenbach (2018), we assume that if bank i needs

to raise a total amount of cash x, then it liquidates πi,kx for each asset k. This assumption may be

interpreted as a stationarity condition on the composition of the banks’ portfolio: in a hypothetical

multi-period model, the proportional liquidation strategy would yield a terminal portfolio that is

close to the initial portfolio, and therefore still resilient to subsequent market shocks. We remark

here that there is no agreement in the empirical literature on the liquidation strategy adopted by

financial firms when they liquidate assets. On the one hand, selling liquid assets first reduces the

cost of fire sales. On the other hand, holding liquid assets carry an option value because of the

prospectus that markets may become more illiquid in the future (see Ang et al. (2014)). Because

of the lack of conclusive evidence on what force dominates in this trade-off, we consider the case of

proportional liquidation. 6

Assumption 2.3. Asset liquidation is costly.

If a large return shock causes the bank’s leverage to exceed the regulatory threshold, the bank

needs to immediately readjust its positions to comply with regulatory requirements. If assets

are liquidated on a very short notice, then the bank may need to sell them at discounted prices

5If banks use a combination of equity issuance and asset liquidation to comply with regulatory requirements, the
size of fire-sale externalities would be lower but our qualitative conclusions would remain unaltered.

6Greenwood et al. (2015) and Duarte and Eisenbach (2018) also consider –as an alternative to the proportional
liquidation strategy– a pecking order of liquidation where banks first sell off their most liquid assets. They show that
in a calibrated model of fire-sale spillovers this strategy reduces the magnitude of fire-sale losses. In the same context
of leverage targeting, Capponi and Larsson (2015) show analytically that fire-sale externalities are smaller if banks
first sell liquid and then illiquid assets. In a two-period game-theoretical model, forcing banks to follow a pecking
order strategy may lead to counterintuitive results: all banks would simultaneously first sell the most liquid asset,
making its liquidation costly. Some banks may therefore prefer not to hold any share of the most liquid asset only as
an artificial consequence of the pecking order constraint.
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relative to their fundamental values, i.e., a fire sale would occur. The initial price of each asset

k is normalized to one dollar. If the aggregate amount of asset k that banks liquidate is qk, the

execution price per share of the asset is

ppostk := 1 + Zk − γkqk,

where γk > 0 is the price impact parameter of asset k. The limiting case γk ↓ 0 corresponds to the

case of a perfectly liquid asset.

Our model abstracts from the underlying source of market illiquidity, and captures the knocked

down effect of sales on prices in reduced form through the parameter γ. The price impact function

can be viewed as a representation of outside investors with limited capital and other investment

opportunities. This form of price impact function captures the mechanics of typical theoretical

models of fire sales, as explained next. Suppose outside investors with a fixed dollar amount of

outside wealth were to step in and provide liquidity to the banking sector during a fire sale. These

investors would then face a trade-off between the returns from investment in outside projects with

gains from investing in fire sold assets; see also Shleifer and Vishny (2011) for a related discussion.

The total amount of shares of asset k that banks liquidate is

N∑
j=1

πj,kxjχ{λpostj >λM},

where χ{λpostj >λM} is the indicator function of the event {λpostj > λM}. Hence, the liquidation cost

per share of asset k is γk
∑N

j=1 πj,kxjχ{λpostj >λM}. Let Diag[γ] be the diagonal matrix with entries

γk on the diagonal. Then the total liquidation cost incurred by bank i at time 2 is

costi(πi, π−i, Z) := xiχ{λposti >λM}π
T
i︸ ︷︷ ︸

assets liquidated by bank i

Diag[γ]
N∑
j=1

πjxjχ{λpostj >λM}︸ ︷︷ ︸
total quantities traded

,

where π−i := (π1, · · · , πi−1, πi+1, · · · , πN ).

We assume that assets’ returns are identically distributed. Maximizing the banks’ expected

portfolio return is therefore equivalent to minimizing their expected liquidation costs. Even though

banks are risk-neutral, the leverage constraint introduces a cost that depends on each bank’s tail

risk, which can be interpreted as a form of induced risk preference.

At date 1, bank i chooses the portfolio weights that minimize the expected value of its total

liquidation cost incurred at date 2. We outline the technical assumptions A.2–A.5 in the Appendix.

We refer to them whenever they are required in our results.
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3 Equilibrium Asset Allocations

The banks’ portfolio allocations are described by a game theoretical model as follows:

i) The N banks are the players;

ii) The set X := {x ∈ [0, 1]K :
∑K

k=1 xk = 1} of admissible portfolio weights is the space of

strategies;

iii) Each bank minimizes an objective function given by the expected total liquidation cost, i.e.,

ECi(πi, π−i) := E[costi(πi, π−i, Z)].

A Nash equilibrium is a set of banks’ asset allocation decisions π := (π1, · · · , πN ) such that no

bank has any incentive to unilaterally deviate from it, i.e., ECi(πi, π−i) ≤ ECi(π̃i, π−i), for any i

and strategy π̃i of bank i. Bank i’s objective function may be rewritten as Si(πi)+
∑

j 6=iMi,j(πi, πj),

where

Si(πi) := E
[
πTi Diag[γ]πix

2
iχ{λposti >λM}

]
,

Mi,j(πi, πj) := E
[
πTi Diag[γ]πjxixjχ{λposti >λM}∩{λpostj >λM}

]
.

Si is the idiosyncratic component of the expected liquidation cost incurred by bank i. Such a cost

is due to the price dislocation caused by bank i’s asset sales, and would persist even in the absence

of other banks in the system. Mi,j is the systemic component of the liquidation cost, i.e., the extra

cost incurred by bank i due to the presence of bank j in the system. This precisely captures the

externality that bank j imposes on bank i due to their overlapping portfolios.

Fix the asset holdings π−i of all other banks except i. Bank i’s optimization problem is equiv-

alent to choosing the portfolio weight vector πi that minimizes

P (π) :=
N∑
m=1

(
Sm(πm) +

∑
j<m

Mm,j(πm, πj)

)
.

Because each bank minimizes the same objective function, the problem can be formulated in terms

of a potential game, where P (π) is the potential function.

Proposition 3.1. The game specified by (i)-(iii) is a potential game. Moreover, if Z is a continuous

random variable with values in RK , the game admits a Nash equilibrium.

Even though a Nash equilibrium exists, its uniqueness cannot be always guaranteed. This is due

to the complex trade-offs faced by each bank in the system. On the one hand, diversification reduces

the likelihood of asset liquidation. On the other hand, concentration on liquid assets and avoidance

of portfolio overlapping with other banks reduces the realized liquidation costs. This multiplicity

of economic forces that drive allocation decisions imply that the bank’s optimization problem is in
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Figure 2: The region of parameters in which the function P (π) is convex for N = 2, K = 2. The
leverage threshold λM is set to 30 and λ1 is set to 15.

general non-convex. Hence, the game may admit multiple equilibria. If the system is sufficiently

homogeneous, then the incentives to diversify and to hold a liquid portfolio are sufficiently aligned,

and the game admits a unique equilibrium (see Theorem 3.2). In Figure 2 we illustrate that the

equilibrium is unique even in a moderately heterogeneous system.

Theorem 3.2. Let N = 2, K = 2. Under Assumption A.2, for any λ,w, γ > 0 there exist

λ∗ < λ < λ∗, w∗ < w < w∗, γ∗ < γ < γ∗ such that if λi ∈ (λ∗, λ
∗), wi ∈ (w∗, w

∗) for i = 1, 2 and

γk ∈ (γ∗.γ
∗) for k = 1, 2, then there exists a unique Nash equilibrium.

4 The Nash Equilibrium of Banks’ Portfolio Holdings

The optimal portfolio allocation of a bank in isolation, i.e., for N = 1, provides a benchmark for

analyzing the impact of the system on the equilibrium allocation. If either all assets have the same

liquidity or all banks are equally leveraged, then the presence of other institutions in the system does

not affect the bank’s portfolio holdings. However, in the case of a heterogeneous financial system,

each bank seeks to run away from the systemic externalities by reducing its portfolio commonality

with other banks.

4.1 Single Bank Benchmark

In the absence of systemic externalities, the bank’s portfolio allocation decision is driven by two

main forces: the likelihood of breaching the leverage constraint and the total realized costs from

the bank’s liquidation strategy. If all assets are equally liquid, the individual minimization of

these two criteria yields the same outcome: complete diversification is optimal (see Proposition 4.1

for the formal statement). First, the portfolio’s variance –hence the probability of violating the
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leverage constraint– is minimized when the portfolio is fully diversified. Second, the marginal cost

of asset liquidation is increasing in the quantity that is sold, therefore liquidating smaller positions

in multiple assets results in a lower cost than liquidating a large position in a single asset.

Proposition 4.1. Let N = 1 and γk = γ for each k. Under Assumption A.2, the optimal allocation

is πS1,k = 1
K for all k.

If assets have different liquidity levels, the two forces described above drive the bank’s allocation

decisions in opposite directions. The probability of violating the leverage constraint does not depend

on the liquidity of the assets, but only on the distribution of the assets’ returns. On the one hand,

a portfolio with equal asset weights minimizes the likelihood of forced liquidation because returns

are identically distributed. On the other hand, to reduce the total costs in the event of a forced sale

the bank should allocate a larger portion of its wealth to the most liquid assets. More precisely, in

a market consisting of two assets with liquidity parameters γ1 < γ2, the optimal liquidation policy

is attained when the marginal cost from the sale of each asset is identical. In other terms, if a

bank has to liquidate assets, it is optimal to sell a proportion x of the first asset and 1− x of the

second asset, where x satisfies the indifference condition 1 + γ1x = 1 + γ2(1 − x), i.e., x = γ2
γ1+γ2

.

Because of the trade-off between these two forces, the optimal portfolio weight πS1,1 lies in the

interval (12 ,
γ2

γ1+γ2
).

Proposition 4.2. Let N = 1, K = 2, and 0 < γ1 < γ2. Assume that S1(π1) is convex. Under

Assumption A.2, it holds that πS1,1 ∈ (12 ,
γ2

γ1+γ2
), where (πS1,1, 1− πS1,1) minimizes the function S1 on

X. Furthermore, πS1,1(λ) is an increasing function of λ.

Proposition 4.2 also states that banks with different leverage ratios weigh these two forces

differently, and therefore hold different optimal portfolios. A highly leveraged bank is more likely

to breach the leverage constraint regardless of its portfolio allocations, and should therefore aim at

reducing the costs of its asset liquidation strategy. Vice versa, a bank with a low leverage ratio is

less concerned about its realized liquidation costs, and constructs a portfolio that is more diversified

but less liquid.

4.2 Homogeneous Economy

Consider an economy that is homogeneous either across assets –all assets have the same liquidity– or

across banks –all banks are equally leveraged–. Then, banks hold identical portfolios in equilibrium.

Furthermore, as formalized in the next Proposition, this portfolio coincides with that of the single

bank benchmark in which each bank does not account for the liquidation actions of other banks.

Proposition 4.3. Under Assumptions A.2 and A.3:

(1) If γk = γ for each k, then π∗i,k = 1
K is the unique Nash equilibrium.

(2) Let πS be the vector of optimal weights determined in Proposition 4.2 when the leverage ratio

is λ. If λi = λ for each i, then π∗i = πS is the unique Nash equilibrium.

11

 Electronic copy available at: https://ssrn.com/abstract=3345399 



While the presence of other institutions holding the same portfolio π∗ results in higher expected

liquidation costs, it does not alter the portfolio holdings of each individual bank. To see this,

consider two equally leveraged banks in a market with two assets. The optimal portfolio π∗ that

each bank holds if it were the only institution in the system is such that the expected marginal

liquidation costs for each asset are identical. If this were not the case, the bank would invest more

in the asset with lower marginal cost to reduce the total expected costs. However, in a system

with two banks, each bank also accounts for the externalities imposed by the other bank. These

externalities can be decomposed across assets: a higher portfolio weight in an asset implies a larger

externality resulting from the liquidation of that asset. If both banks hold the same portfolio π∗, the

additional cost that each bank imposes on the other due to portfolio commonality is the same for all

assets. In particular, the marginal expected liquidation costs for each asset after accounting for the

additional cost imposed by the other bank are also identical, because these additional externalities

are the same across assets.

4.3 Heterogeneous Economy

In this section, we consider an economy in which there is heterogeneity both with respect to assets’

illiquidity and banks’ leverage. Then the systemic externalities arising from joint asset liquidation

affect the banks’ optimal portfolio allocations. As argued in Section 4.1, a bank whose leverage is

closer to the regulatory threshold values liquid assets more than a bank with lower leverage. In a

market consisting of two heterogeneous assets, the bank with lower leverage holds a more diversified

portfolio and allocates a higher proportion of wealth to the more illiquid asset relative to the more

leveraged bank. Hence, the presence of the bank with smaller leverage contributes to increase the

costs of the illiquid asset held by the highly leveraged bank, which in turn readjusts its portfolio

to hold an even larger position in the liquid asset. Analogously, the less leveraged bank shifts its

portfolio towards the less liquid asset. Both banks adjust their positions further and the prevailing

Nash equilibrium is the aggregate outcome of this process. In each iterative step of this procedure,

each bank runs away from the externalities imposed by the other bank in the system.

Theorem 4.4 states that banks reduce portfolio overlapping, and therefore cross-bank external-

ities, when they account for the presence of other banks in the system.

Theorem 4.4. Let N = 2, K = 2. Assume γ1 < γ2 and λ1 > λ2. Under Assumptions A.2, A.3,

and A.4, |π∗1,1 − π∗2,1| > |πS1,1 − πS2,1|, where πSi,1 is bank i’s optimal asset 1 allocation in the single

bank benchmark.

Taken together, Proposition 4.3 and Theorem 4.4 show that it is the heterogeneity in the

financial system that gives banks incentives to reduce their common exposures. We provide a

graphical illustration of this phenomenon in Figure 3. When assets have the same liquidity, i.e.,

γ1 = γ2, all banks hold the same perfectly diversified portfolio. If the assets have different liquidity,

then each bank’s optimal portfolio allocation would be different even in its corresponding single bank

benchmark. Cross-bank externalities increase diversity in banks’ asset holdings, because banks seek
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Figure 3: Banks’ portfolio allocations in asset 1 in an economy consisting of two assets and two
banks. We increase heterogeneity across assets (left panel) and across banks (right panel). Solid
lines represent the allocations in the two-bank economy (orange for bank 1, red for bank 2), dashed
lines the allocations of each bank in the single-bank benchmark (blue for bank 1, green for bank 2).
We fix λM = λ1 = 30. In the left panel, we choose λ2 = 5. In the right panel, we choose γ2/γ1 = 6.

to reduce their portfolio commonality. A similar mechanism arises when considering heterogeneity

in banks’ leverages: assuming assets have different liquidity levels, banks hold identical portfolios

when they are equally leveraged. Vice versa, if banks have different leverage ratios they reduce

their common exposures significantly compared to the portfolio commonality implied by the optimal

allocations in their corresponding single bank benchmark (see the right panel in Figure 3).

Even though banks may not have accounted for systemic externalities created by portfolio

commonality prior to the global 2007-2009 financial crisis, empirical evidence appears to suggest

that they have started to account for the risk of fire-sale spillovers in more recent years. Duarte and

Eisenbach (2018) define a measure of portfolio overlap on illiquid assets by large leveraged banks,

called “illiquidity concentration”. This measure has increased steadily until 2007 and started to

drop in 2013. The recent decrease in illiquidity concentration signifies either a higher awareness of

portfolio contagion or the efficacy of new regulatory measures.

4.4 A System with Multiple Equilibria

In general, the uniqueness of a Nash equilibrium cannot be guaranteed even in a financial system

consisting of only two banks and two assets. This is because the cost function is not necessarily

convex in the portfolio weights. To understand why this is the case, consider two banks of signifi-

cantly different size: a highly leveraged small bank and a lowly leveraged large bank. Because the

externalities imposed by the small bank on the large bank are small relative to the size of the latter

bank, the large bank’s portfolio allocations are close to the ones it would choose if it were the only

bank in the system. The small bank balances the following economic forces. First, the small bank

would like to reduce the likelihood of breaching the leverage constraint, and hence it aims at holding

a fully diversified portfolio. Second, the highly leveraged small bank has a stronger incentive to hold

the liquid asset because this lowers the cost of asset liquidation. Third, to minimize its portfolio
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Figure 4: Banks’ portfolio allocations in asset 1 for a market of two banks and two assets as a
function of the assets’ heterogeneity. Solid lines represent the allocations in one equilibrium (orange
for bank 1, blue for bank 2), dashed lines the allocations of each bank in another equilibrium. We
fix λM = 30, λ1 = 10, λ2 = 25, w1 = 50w2. There exist two prevailing equilibria in the γ2/γ1
interval [7, 9.5].

overlap with the large bank, the small bank may significantly increase its position in either asset.

Hence, there exists a region of the parameter space in which two equilibria are possible: the small

bank may run away from the externalities imposed by the large bank by either holding a much

higher position in the liquid asset compared to the one it would hold in the absence of the large

bank, or shifting its portfolio towards the illiquid asset. We illustrate these two potential outcomes

in Figure 4. If the difference in liquidity of the two assets increases, then the large bank also

holds a significant position in the liquid asset resulting in further portfolio overlap. If the expected

liquidation costs due to the presence of the large bank are prohibitively high, it is preferable for

the small bank to hold more shares of the illiquid asset and therefore reduce the portfolio overlap

with the large bank. In the example of Figure 4, for values of relative asset illiquidity γ2/γ1 that

belong to the interval [7, 9.5], two Nash equilibria exist.

5 Social Welfare and Policy Implications

An ample literature has discussed the systemic risk implications of fire sales (see, for example,

Shleifer and Vishny (2011) and Schwarcz (2008)). Persistent price-drops may lead investors to

lose confidence and withdraw funds from institutions, undermining financial intermediation and

weakening the wider economy. If the assets held by the banks are bonds used to finance long term

projects of state, local governments, or private companies, then premature liquidation of these

assets results in a loss of economic productivity because it hampers the ability of running projects

till maturity. We assume that the objective of the social planner is to minimize the expected

aggregate liquidation costs in the system, i.e., the objective function TC(π) =
∑N

i=1ECi(π).

The following result shows that in a heterogeneous economy the banks’ asset allocations obtained
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in equilibrium are not socially optimal. Even if banks account for the presence of other banks and

reduce portfolio overlapping, their holdings still exhibit excessive asset commonality relative to the

social optimum.

Theorem 5.1. Let K = 2 and N = 2. Under the assumptions of Theorem 4.4 and Assumption

A.5, |πSP1 −πSP2 | > |π∗1 −π∗2|, where πSPi is the bank i’s asset 1 allocation that minimizes the social

planner’s objective function.

Theorem 5.1 states that banks choose to hold excessively overlapping exposures compared to

the social optimum. This is because each bank does not internalize the externalities it imposes on

all other banks, but only accounts for the externalities imposed by other banks on itself when it

makes its allocation decision. By contrast, in a homogeneous economy the social optimum is aligned

with the banks’ portfolio holdings obtained in equilibrium. In other words, if banks are equally

leveraged, the equilibrium prescribed by Proposition 4.3 is socially optimal. In this equilibrium

all banks hold the same portfolio, i.e., there is complete portfolio overlap. However, this does not

imply that a homogeneous economy is socially preferable to a heterogeneous one. As the following

Proposition shows, the opposite result holds, i.e., aggregate liquidation costs are maximized in a

homogeneous economy.

Proposition 5.2. Assume K = 2 and N = 2. Let w be the aggregate asset value and d the

aggregate debt in the system. Assume that the banks’ individual asset values are w1 = w2 = w
2 ,

and that the debt levels d1 and d2 are such that λ1 := d1
w1−d1 ≤ λM , λ2 := d2

w2−d2 ≤ λM where

d1 + d2 = d. Define TC∗(d1) to be the total expected liquidation costs in equilibrium when the debt

of bank 1 is d1 (and therefore the debt of bank 2 is d − d1). Then d1 = d
2 is a local maximum of

TC∗(d1).

Theorem 4.4 showed that it is the heterogeneity in the banking system to drive banks towards a

reduced portfolio overlap. Lower portfolio commonality in turn reduces the likelihood and severity

of liquidity crises. Therefore, aggregate costs are higher in a homogeneous economy, where all

banks hold the same portfolio, as stated in Proposition 5.2. See also Figure 5 for a plot of the total

expected liquidation costs as a function of the heterogeneity in the system.

The probability of joint asset liquidation by all banks is determined endogeneously in equilib-

rium. In fact, the probability of a fire sale depends on the portfolio holdings of each bank in the

system. As portfolio commonality increases, so does the likelihood of a fire sale. Consider for

example an economy with two identical banks and two assets. Portfolio commonality is minimized

when bank 1 only holds asset 1 and bank 2 only holds asset 2. Hence, a fire sale occurs when a

large shock hits simultaneously both assets. If only one asset is hit by a market shock, one bank

will be forced into asset liquidation, but not the other. By contrast, if both banks hold the same

diversified portfolio then either both banks would be forced to jointly liquidate assets or neither of

them would. This leads to a fundamental trade-off between asset diversification on the individual

firm level and systemic portfolio diversification: while reducing portfolio commonality by holding
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Figure 5: Total expected liquidation costs for different levels of leverage heterogeneity. If d1 = d2,
then the system is homogeneous.

less diversified portfolios may increase the probability of liquidation in isolation, it also makes si-

multaneous liquidation less likely. The endogenous probability of a fire sale is therefore lower in

an economy where, in equilibrium, banks reduce the portfolio overlap. In particular, as shown in

Proposition 5.2, heterogeneity in the financial system is socially beneficial because it drives banks

towards holding diverse portfolios.

From a policy making standpoint, Proposition 5.2 implies that bank mergers have an adverse

impact on financial stability. A homogeneous system behaves as a single large bank, and can thus be

interpreted as the outcome of bank consolidation. A single bank cannot diversify its liquidation risk,

as it is either affected by the liquidation event or not. If instead the system is heterogeneous, banks

manage their assets to account for systemic externalities, i.e., adjust their portfolios to reduce the

likelihood of simultaneous sell-offs. Hence, systemic portfolio diversification occurs. A consolidated

banking system decreases the available options for diversifying fire-sale risk across banks. Hence,

the total quantity that the system is required to liquidate cannot be as optimally controlled as in

a system with multiple smaller banks.

Next, we discuss how the imposition of a tax on the interconnectedness of the banking system

may align the private banks’ incentives with the social optimum. The next Proposition provides an

explicit formula for such a tax, through which each bank fully internalizes the externalities imposed

on the rest of the system.

Proposition 5.3. Under Assumptions A.3 and A.5, if each bank i is charged a tax in the amount

equal to Ti(π) :=
∑

j 6=iMi,j(π), then the private equilibrium allocation is equal to the social planner’s

optimum.

The tax amount Ti(π) is equal to the sum of externalities Mi,j(π), j 6= i, that bank i imposes

on every other bank in the system. This externality is increasing in the size of the bank’s balance

sheet, bank’s leverage ratio and the concentration of the bank’s holdings on illiquid assets. This tax
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changes the ex-ante banks’ incentives, aligning their equilibrium asset allocations with the social

optimum. In practice, a tax on portfolio overlapping may be combined with the initiation of an

asset purchase program in the event of a liquidity crisis. The tax would not only incentivize banks

to reduce their common exposures, and hence the likelihood of asset liquidation spirals, but would

also fund such a relief program to mitigate fire-sale losses during a crisis.

The tax Ti(π) is related to the systemicness of bank i, as defined in Greenwood et al. (2015):

the amount a bank should be charged equals the component of its expected systemicness that is not

borne by the bank itself. In other words, such a tax amount can be seen as the weighted average of

banks’ contributions to the aggregate vulnerability of the rest of the system over a number of stress

tests with different initial market shocks. Cont and Schaanning (2017) describe stress tests in line

with our model, as we assume that banks –rather than being leverage targeting like in Greenwood

et al. (2015)– only sell assets if the leverage requirement is breached.

In the United States, the Financial Stability Oversight Council (FSOC) uses total consolidated

assets, gross notional credit default swaps, derivative liabilities, total debt outstanding, leverage

ratio, and short-term debt ratio as factors for designating systemically important financial institu-

tions (SIFIs). An institution is designed as SIFI if these factors exceed certain thresholds.7 Our

study highlights another dimension to consider in the designation of SIFI institutions, in addition

to too-big-to-fail measures of default costs. A highly central node in the network of asset holdings

should be taxed more because it would cause higher disruption in the provision of services to the

real economy during fire-sale events (e.g. interruption of project financing, and termination of

productive investments due to suspension of loans).

6 Operational Challenges and Model Extensions

We discuss limitations of the current model and outline potential extensions as well as related

operational challenges. Because our focus is on fire-sale spillovers, we ignore the possibility of a

bank’s default. If bank i’s portfolio return falls below − 1
1+λi

, its equity becomes negative. A slight

extension of the model would cap the amount a bank can liquidate to the total amount of assets

held by the bank. Because the cost function is well-defined for all values of asset shocks Z, we

assume the cost function to be uncapped.

In our model, the leverage ratio is updated only after the initial market shock, but not marked to

market following price changes due to asset liquidation. While we assume that the initial shock on

asset prices is permanent, the knocked-down effect on prices is only temporary. Marking to market

would make leverage procyclical, because the initial asset liquidation –and not further fundamental

market changes– would cause new rounds of deleveraging. We also remark that commercial banks

in the US and universal banks in Europe do not mark the value of their assets to market.8

7The BIS has developed a methodology to identify systemically important financial institutions (SIFIs) based on
asset size, interconnectedness, and the availability of substitutes for the services they provide.

8Regulators generally try to lean against mark-to-market valuation. One mechanism to enforce this is by requir-
ing buffers in good times that can be run down in bad times. In other words, officials encourage banks to have
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In our study, we assume that there is only one round of deleveraging. Because asset liquidation

is costly, the revenue loss due to fire sales would result in the bank violating again the regulatory

threshold, and thus trigger a new round of deleveraging. Hence, there would be infinite rounds of

deleveraging. Realistically, banks are likely to target a leverage ratio that is strictly smaller than

λM , and the resulting safety buffer protects the banks from subsequent rounds of deleveraging.

To preserve tractability and highlight the main economic forces, we assume that banks target

λM and perform only one round of asset liquidation. A similar assumption has also been made

by Greenwood et al. (2015), who consider only the first round of deleveraging in their leverage

targeting model.

Our model assumes that banks have full knowledge on the portfolio composition of other banks.

This assumption is standard in existing literature on leverage targeting banks, in which the compu-

tation of systemic risk measures relies on publicly available data. In the U.S., financial institutions

file form FR Y-9C with the Federal Reserve every quarter. These forms provide consolidated in-

formation on each bank’s exposures and are available through the Board’s Freedom of Information

Office. Duarte and Eisenbach (2018) build their empirical model on FR Y-9C balance sheet data.

The studies on the vulnerability of the European banking system by Greenwood et al. (2015), and

Cont and Schaanning (2017) rely on publicly available data released by the European Banking

Authority.

Banks are complex organizations consisting of different divisions, each with different incentives.

Our framework is designed to capture the behavior of the asset management arm of a bank. Because

such an arm consists of sophisticated traders who compete with asset manager arms of other banks,

it is likely to have more granular information on the portfolio composition of its competitors.

7 Conclusions

Existing literature on fire sales has analyzed the mechanism through which hard balance sheet

constraints and portfolio commonality exacerbate fire-sale externalities in the presence of distressed

financial institutions. Our paper fills an important gap in the literature because it views banks

as strategic as opposed to mechanical: Banks adjust their balance sheets to be more resilient to

fire-sale spillovers. As such, our model does not simply provide a tool to study the propagation of

financial contagion through the network of asset holdings due to overlapping portfolios. Rather, it

sheds light on how fire-sale risk affects banks’ ex-ante asset holding decisions. Furthermore, our

model can be used to assess the welfare implications of government intervention as banks adapt to

the new regulatory environment.

In the current paper, we focused on large leveraged institutions –typically banks– because of

their significant contribution to systemic risk. Depending on their structure, financial institutions

are subject to constraints that may force them to raise liquidity under adverse market conditions.

For instance, hedge funds may need to liquidate assets if they face an approaching margin call; a

lower leverage in good times than in bad times. This is the purpose of the Basel III conservation buffer and the
countercyclical buffer.
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mutual fund may need to engage in massive sell-offs to pay its redeeming investors. Despite our

focus on leverage constraints, our conclusions are far-reaching and may also be adapted to financial

systems subject to other types of financial constraints.

A natural extension of the model includes assets with heterogeneous returns. Realistically,

investments in illiquid assets are compensated with higher risk premia. In such an extension,

banks are profit seeking and risk-averse. This would add another layer of complexity to the model,

and may result in a loss of analytical tractability. Because such a model extension mimics more

closely banks’ balance sheet decision making, solving it –even if only numerically– would be of

interest to regulators because it would allow them to better assess the consequences of supervisory

intervention.

Furthermore, the model may be extended to study the dynamics of systemic diversification.

Such a model would allow to analyze the relation between the dynamics of return shocks and the

commonality-diversification trade-off. Decoupling portfolio holdings and liquidation strategy would

allow to study the evolution of each bank’s optimal portfolio over time and the resulting dynamics

of fire-sale externalities.

A Technical Assumptions

First, we introduce distance to liquidation as a convenient reparameterization of the leverage ratio.

Definition A.1. The distance to liquidation of bank i is `i := λM−λi
(1+λi)λM

, for i = 1, · · · , N .

Clearly, if banks satisfy the leverage requirement, there is a one-to-one relationship between

leverage ratio and distance to liquidation. The latter quantity can be viewed as a rescaling of

the leverage ratio: distance to liquidation is on the same scale as the portfolio return. A highly

leveraged bank that breaches the leverage threshold even for a low decrease in its asset value has

a low distance to liquidation. Vice versa, a bank with a low leverage ratio has a large distance to

liquidation. Bank i is forced to liquidate assets to comply with the leverage requirement exactly

when its portfolio return Ri at date 2 is below −`i.

Assumption A.2. For each k = 1, . . . ,K, Zk has continuous probability density function, increas-

ing on [−∞, 0], and the random vector Z is spherically symmetric.

Assumption A.2 implies that all assets have the same distribution of returns. Such an assump-

tion allows isolating the effect of fire sales from that of mean-variance optimization of returns.

Furthermore, spherical symmetry guarantees that full diversification yields the lowest likelihood

of liquidation. Because each bank’s cost function only depends on the truncated distribution of

its portfolio return, Assumption A.2 could be relaxed to also include probability density functions

with asymmetric tails. This assumption is satisfied if Z is a centered Gaussian random vector, and

the examples provided in the paper will be based on Gaussian returns.

Assumption A.3. The potential function P (π) is strictly convex on XN .
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Assuming that the potential function is strictly convex ensures uniqueness of the equilibrium

asset allocations. For N = 2, this assumption is implied by assumptions on the primitives of the

model (see Theorem 3.2).

Assumption A.4. For each bank i, `i ≤ ¯̀ for a sufficiently small ¯̀.

Under Basel III, the required leverage constraint is λM = 33. This means that a leverage ratio

of 20 implies a distance to liquidation equal to 1.9%. Even a leverage ratio of 10 implies a distance

to liquidation of just 6.3%.

Assumption A.5. The social planner’s objective function TC(π) is strictly convex on XN .

The assumption guarantees that the social planner admits a unique local minimum.

B Proofs

Lemma B.1. If bank i’s portfolio return is Ri, the amount xi that bank i is required to raise is

λMwi(Ri + `i)
−.

Proof. Bank i liquidates if di
wi(1+Ri)−di ≥ λM . After substituting di = λi

1+λi
wi, it can be seen that

the inequality is equivalent to Ri + `i ≤ 0. Solving for x in the equation di−x
wi(1+Ri)−di = λM , yields

the quantity x = λMwi(Ri + `i)
− that bank i is required to trade to comply with regulations.

Proof of Proposition 3.1

Recall that the game is a potential game with potential function P : XN → R if ∀i ∈ {1, · · · , N},
∀π−i ∈ XN−1, ∀π′i, π′′i ∈ X,

P (π′i, π−i)− P (π′′i , π−i) = ECi(π
′
i, π−i)− ECi(π

′′
i , π−i).

It can be immediately verified that P (π) satisfies this condition.

If Z is a continuous random variable, then P (π) is a continuous function over the compact

set XN . Hence, there exists π∗ ∈ XN that minimizes P (π). It can be verified that π∗ is a Nash

equilibrium.

Proof of Theorem 3.2

Recall the definition of distance to liquidation `i in Definition A.1. First, we assume `1 = `2,

w1 = w2 and γ1 = γ2, and prove that the potential function P (π) is strongly convex. Notice that

`1 = `2 is equivalent to λ1 = λ2.

With a slight abuse of notation, we denote πi,1 simply by πi, and hence πi,2 = 1− πi. We will

show that the Hessian matrix H of 1
λ2Mw2γ

P (π) is positive definite. For the first part of the proof

we will consider any N > 1.
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Define Ai := {πiZ1 + (1 − πi)Z2 + ` ≤ 0} and Ai,j := {πiZ1 + (1 − πi)Z2 + ` ≤ 0, πjZ1 + (1 −
πj)Z2 + ` ≤ 0} for any 1 ≤ i, j ≤ N . A simple calculation shows that Hi,i = 1

λ2Mw2γ
∂2

∂π2
i
P (π) is

E

[
2(Z1 − Z2)

2(π2i + (1− πi)2)1Ai + 8(πiZ1 + (1− πi)Z2 + `i)(Z1 − Z2)(2πi − 1)1Ai

+ 4(πiZ1 + (1− πi)Z2 + `i)
21Ai +

∑
j 6=i

(
2(πjZ1 + (1− πj)Z2 + `j)(Z1 − Z2)(2πj − 1)1Ai,j

+ (πiπj + (1− πi)(1− πj))
∂

∂πi

[
(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `j)1Ai,j

] )]
.

The off-diagonal element Hi,j = 1
λ2Mw2γ

∂2

∂πi∂πj
P (π) of the Hessian matrix H is

E

[
(Z1 − Z2)

2(πiπj + (1− πi)(1− πj))1Ai,j + (πjZ1 + (1− πj)Z2 + `j)(Z1 − Z2)(2πi − 1)1Ai,j

+ (πiZ1 + (1− πi)Z2 + `i)(Z1 − Z2)(2πj − 1)1Ai,j

+ 2(πiZ1 + (1− πi)Z2 + `i)(πjZ1 + (1− πj)Z2 + `j)1Ai,j

]
.

Next, we construct a positive semidefinite matrix M1 with the same off-diagonal elements as H.

Define the random vectors v(1) := (πi(Z1−Z2)1Ai)1≤i≤N , v(2) := ((1−πi)(Z1−Z2)1Ai)1≤i≤N , v(3) :=

((πiZ1 + (1− πi)Z2 + `i)1Ai)1≤i≤N , v(4) := ((Z1−Z2)(πiZ1 + (1− πi)Z2 + `i)1Ai)1≤i≤N and v(5) :=

((2πi−1)1Ai)1≤i≤N . The random matrixM2 := v(1)v(1)
T

+v(2)v(2)
T

+2v(3)v(3)
T

+v(4)v(5)
T

+v(5)v(4)
T

is such that E[M2] has the same off-diagonal elements of H. Recall that for any couple of linearly

independent vectors x, y, the matrix xyT+yxT has exactly one negative eigenvalue, while the matrix

xxT has only one non-zero eigenvalue, which is positive. Now, we want to find a positive definite

diagonal matrix D1 such that D1+M2 is almost surely positive semidefinite and the elements of D1

are as small as possible. An immediate application of Woodbury matrix identity and the matrix

determinant lemma shows that for any symmetric invertible matrix A, we have det(A+xyT+yxT ) =

((1 + xTA−1y)2 − (xTA−1x)(yTA−1y))det(A). Therefore, D1 + v(4)v(5)
T

+ v(5)v(4)
T

is positive

semidefinite if and only if a := (1 + v(4)
T
D−11 v(5))2 − (v(4)

T
D−11 v(4))(v(5)

T
D−11 v(5)) ≥ 0. Define

b := minπ∈XN a. It can be verified that the matrix D1 with entries d
(1)
i,i = N

4 (2` + Z1 + Z2)
21Ai is

such that b = 0. Therefore, D1 +M2 is a positive semidefinite matrix.

We now show that

E

[
∂

∂πi

[
(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `)1Ai,j

] ]
> 0.

Assume that πi + ε < πj , for some small ε > 0, and define the event Aεi,j := {(πi + ε)Z1 + (1 −
πi − ε)Z2 + ` ≤ 0, πjZ1 + (1 − πj)Z2 + ` ≤ 0}. We have that Ai,j ⊂ Aεi,j and that Z1 < Z2 on

the event Aεi,j \ Ai,j . Therefore, (Z1 − Z2)(πjZ1 + (1 − πj)Z2 + `) > 0 on Aεi,j \ Ai,j . Hence, for

πi < πj , we have shown that the derivative is positive. Similarly, if πi > πj , A
ε
i,j ⊂ Ai,j and

(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `) < 0 on Ai,j \ Aεi,j . It follows that also in this case the derivative
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is positive.

Hence, the diagonal matrix D2 with elements

d
(2)
i,i = E

[∑
j 6=i

(πiπj + (1− πi)(1− πj))
∂

∂πi

[
(Z1 − Z2)(πjZ1 + (1− πj)Z2 + `)1Ai,j

] ]

is positive definite.

Next, we show that the diagonal matrix M3 := H − E[M2 +D1]−D2 is positive semidefinite.

It follows then that H is positive definite. The i-th element on the diagonal of M3 is

E

[
(Z1 − Z2)

2(π2i + (1− πi)2)1Ai + 6(πiZ1 + (1− πi)Z2 + `)(Z1 − Z2)(2πi − 1)1Ai

+ 2(πiZ1 + (1− πi)Z2 + `)21Ai −
N(Z1 + Z2 + 2`)2

4
1Ai

+
∑
j 6=i

2(πjZ1 + (1− πj)Z2 + `)(Z1 − Z2)(2πj − 1)1Ai,j

]
.

Assume nowN = 2. First, we prove that E

[ (
(Z1 − Z2)

2(π2i + (1− πi)2)− 2(Z1
2 + Z2

2 + `)2)
)

1Ai

]
>

0. Define dax+by(z1, z2) := |az1+bz2|
(a2+b2)1/2

the distance of the point (z1, z2) to the line ax+by = 0. The in-

equality can then be rephrased as E

[(
2d2y−x(Z1, Z2)(π

2
i + (1− πi)2)− d2x/2+y/2+`(Z1, Z2)

)
1Ai

]
>

0. Since π2i +(1−πi)2 ≥ 1
2 , it is enough to prove that E

[(
d2y−x(Z1, Z2)− d2x/2+y/2+`(Z1, Z2)

)
1Ai

]
>

0. Define A
(1)
i = Ai∩{πiZ1−(1−πi)Z2+(2πi−1)` < 0} and A

(2)
i = Ai∩{πiZ1−(1−πi)Z2+(2πi−

1)` ≥ 0}. Notice that the line πix− (1−πi)y+ (2πi− 1)` = 0 is the reflection of the line πix+ (1−

πi)y + ` = 0 over y = −`. We will show that E

[(
d2y−x(Z1, Z2)− d2x/2+y/2+`(Z1, Z2)

)
1
A

(1)
i

]
> 0,

the case for A
(2)
i is analogous. In the set A

(1)
i , consider the points (x1, y1) = (z1, z2) and (x2, y2) =

(z1,−2` − z2) with z2 > −`, which are symmetric with respect to the line y = −`. They are

such that dy−x(x1, y1) > dx/2+y/2+`(x1, y1), dy−x(x1, y1) = dx/2+y/2+`(x2, y2) and dy−x(x2, y2) =

dx/2+y/2+`(x1, y1). In particular,

(d2y−x(x1, y1)− d2x/2+y/2+`(x1, y1)) + (d2y−x(x2, y2)− d2x/2+y/2+`(x2, y2)) = 0.

Notice also that ‖(x1, y1)‖ < ‖(x2, y2)‖. Since the distribution of Z is rotationally invariant and

Z1 has an increasing probability density function on (−∞, 0], we have ϕ(x1, y1) > ϕ(x2, y2), where

ϕ(·, ·) is the probability density function of (Z1, Z2). Therefore,

E

[(
d2y−x(Z1, Z2)− d2x/2+y/2+`(Z1, Z2)

)
1
A

(1)
i

]
=

∫
A

(1)
i

(d2y−x(z1, z2)− d2x/2+y/2+`(z1, z2))ϕ(z1, z2)dz1dz2

=

∫
A

(1)
i ∩{z2>−`}

(d2y−x(z1, z2)− d2x/2+y/2+`(z1, z2))(ϕ(z1, z2)− ϕ(z1,−2`− z2))dz1dz2.
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Both terms in the product of the last integrand are positive. It follows that the expectation on

A
(1)
i is positive. The same arguments hold for the expectation on A

(2)
i , with (x1, y1) = (z1, z2) and

(x2, y2) = (−2`− z1, z2) where z1 > −`.
Next, we prove that

E

[
(πiZ1+(1−πi)Z2+`)(Z1−Z2)(2πi−1)1Ai +(πjZ1+(1−πj)Z2+`)(Z1−Z2)(2πj−1)1Ai,j

]
> 0.

Assume that πi > 1/2, πj < 1/2 and |πi − 1/2| < |πj − 1/2| (analogous arguments apply for all

other combinations). Notice that (πiz1 + (1 − πi)z2 + `)(z1 − z2)(2πi − 1) > 0 for any (z1, z2) ∈
Ai \ Ai,j . Hence, it is enough to show E[((πiZ1 + (1 − πi)Z2 + `)(Z1 − Z2)(2πi − 1) + (πjZ1 +

(1 − πj)Z2 + `)(Z1 − Z2)(2πj − 1))1Ai,j ] ≥ 0. Define A
(1)
i,j = Ai,j ∩ {(1 − πj)Z1 + πjZ2 + ` < 0}

and A
(2)
i,j = Ai,j ∩ {(1 − πj)Z1 + πjZ2 + ` > 0}. On A

(2)
i,j we have dπix+(1−πi)y+` < dπjx+(1−πj)y+`.

Therefore, for any (z1, z2) ∈ A(2)
i,j , since (1 + x2)1/2x is increasing on [0, 1], we get

(πiz1 + (1− πi)z2 + `)(2πi − 1) + (πjz1 + (1− πj)z2 + `)(2πj − 1) =

− 1√
2
dπix+(1−πi)y+`(z1, z2)(1 + (2πi − 1)2)1/2(2πi − 1)

+
1√
2
dπjx+(1−πj)y+`(z1, z2)(1 + (2πj − 1)2)1/2|2πj − 1| >

1√
2

(−dπix+(1−πi)y+`(z1, z2) + dπjx+(1−πj)y+`(z1, z2))(1 + (2πi − 1)2)1/2(2πi − 1) > 0.

Since z1 − z2 > 0 on A
(2)
i,j , we get E[((πiZ1 + (1 − πi)Z2 + `)(Z1 − Z2)(2πi − 1) + (πjZ1 + (1 −

πj)Z2 + `)(Z1 − Z2)(2πj − 1))1
A

(2)
i,j

] > 0. Next, we show that both E[(πiZ1 + (1− πi)Z2 + `)(Z1 −
Z2)(2πi − 1)1

A
(1)
i,j

] and E[(πjZ1 + (1 − πj)Z2 + `)(Z1 − Z2)(2πj − 1))1
A

(1)
i,j

] are positive. Consider

the point (z1, z2) ∈ A
(1)
i,j with z2 > z1, then also (z2, z1) ∈ A

(1)
i,j . Since dπix+(1−πi)y+`(z1, z2) >

dπix+(1−πi)y+`(z2, z1), we get (πiz1 + (1− πi)z2 + `)(z1 − z2)(2πi − 1) + (πiz2 + (1− πi)z1 + `)(z2 −
z1)(2πi − 1) > 0. It follows that E[(πiZ1 + (1− πi)Z2 + `)(Z1 − Z2)(2πi − 1)1

A
(1)
i,j

] > 0. Similarly,

it can be shown that E[(πjZ1 + (1− πj)Z2 + `)(Z1 − Z2)(2πj − 1)1
A

(1)
i,j

] > 0.

The remaining terms in the diagonal elements of M3 are positive. Hence, H is positive definite

for all (π1, π2) ∈ [0, 1]2, and therefore P (π) is strongly convex.

Because of the smoothness of the potential function with respect to the parameters, there exist

`∗ < ` < `∗ (equivalently, λ∗ < λ < λ∗), w∗ < w < w∗, γ∗ < γ < γ∗ such that if `i ∈ (`∗, `
∗)

(equivalently, if λi ∈ (λ∗, λ
∗)), wi ∈ (w∗, w

∗) for each i and γk ∈ (γ∗.γ
∗) for each k, then P (π) is

strictly convex on XN . The uniqueness of the Nash equilibrium then follows from Theorem 2.3 in

Lã et al. (2016).

Proof of Proposition 4.1

Recall the definition of distance to liquidation ` in Definition A.1. By Lemma B.1, the bank’s

expected liquidation costs are given by λ2Mw
2γ‖π‖22E[(πTZ+`)21{πTZ+`≤0}]. Since Z is spherically
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symmetric, 1
‖π‖2π

TZ has the same distribution as Z1. Hence, ‖π‖22E[(πTZ + `)21{πTZ+`≤0}] =

‖π‖22E[(‖π‖2Z1 + `)21{‖π‖2Z1+`≤0}]. It follows that the expected liquidation costs are minimized

when the bank minimizes ‖π‖2. The minimum of ‖π‖2 is attained at πk = 1
K for each k.

Proof of Proposition 4.2

Recall the definition of distance to liquidation ` in Definition A.1. Define f(x, `) := E[(xZ1 +

(1 − x)Z2 + `)21{xZ1+(1−x)Z2+`≤0}] and g(x) := x2γ1 + (1 − x)2γ2. The minimizer of f(·, `) is 1
2

and the minimizer of g(·) is xg := γ2
γ1+γ2

> 1
2 . We write fx(x, `) for ∂

∂xf(x, `). Since d
dπ1,1

S1 =

fx(π1,1)g(π1,1) + f(π1,1)gx(π1,1), f ≥ 0, g > 0, fx(x) < 0 on [0, 12) and fx(x) > 0 on (12 , 1], and

gx(x) < 0 on [0, xg) and gx(x) > 0 on (xg, 1], we get that d
dπ1,1

S1 < 0 on [0, 12 ] and d
dπ1,1

S1 > 0 on

[xg, 1]. Hence, πS1,1 ∈ (12 ,
γ2

γ1+γ2
).

Next, we show that fx(x,`)
f(x,`) is an increasing function of ` for x > 1

2 . Since Z is rotationally

invariant, f(x) = E[(n(x)Z1 + `)21{n(x)Z1+`≤0}], where n(x) = (x2 + (1 − x)2)1/2. An explicit

calculation shows that fx`(π1,1)f(π1,1)− fx(π1,1)f`(π1,1) is equal to

−2(2π1,1 − 1)

n(π1,1)
(2E[Z2

11A]P (A)`n(π1,1) + `2E[Z11A]P (A) + E[Z11A]E[Z2
11A]n(π1,1)

2),

where A = {n(π1,1)Z1 + ` ≤ 0}. Because the distribution of Z1 is increasing on (−∞, 0], we get
`

n(π1,1)
P (A) + E[Z11A] < 0 and E[Z2

11A] + `
n(π1,1)

E[Z11A] < 0. It follows that fx`(π1,1)f(π1,1) −

fx(π1,1)f`(π1,1) > 0 for π1,1 >
1
2 . Therefore, if `2 > `1 we have

fx(πS
1,1(`1),`2)

f(πS
1,1(`1),`2)

>
fx(πS

1,1(`1),`1)

f(πS
1,1(`1),`1)

=

gx(πS
1,1(`1))

g(πS
1,1(`1))

. In other terms, d
dπ1,1

S1(π
S(`1), `2) > 0. Since d

dπ1,1
S1(π1,1, `) is increasing in π1,1, we

get that πS1,1(`2) < πS1,1(`1). Because ` is a decreasing function of λ, we obtain the thesis.

Proof of Proposition 4.3

Rewrite the allocation vector πi ∈ X of bank i as
(
πi,1, · · · , πi,K−1, 1−

∑K−1
k=1 πi,k

)
. Using Lemma

B.1, we get that the derivative 1
λ2M

∂
∂πi,h

P (π) is

E

[
2w2

i (π
T
i Z + `i)π

T
i Diag(γ)πi(Zh − ZK)1Ai + 2w2

i (π
T
i Z + `i)

2(πi,hγh − (1−
K−1∑
k=1

πi,k)γK)1Ai+∑
j 6=i

wiwj(π
T
j Z + `j)π

T
i Diag(γ)πj(Zh − ZK)1Ai,j+

∑
j 6=i

wiwj(π
T
i Z + `i)(π

T
j Z + `j)(πj,hγh − (1−

K−1∑
k=1

πj,k)γK)1Ai,j

]
.

To prove (1), assume that γk = γ and πi,k = 1
K for all i and k. Because Z is spherically symmet-

ric, E[(
∑K

k=1 Zk +K`i)Zh1{
∑K

k=1 Zk+K`i≤0}] = E[(
∑K

k=1 Zk +K`i)ZK1{
∑K

k=1 Zk+K`i≤0}] for each h.

Hence, the first term in the derivative is 0. The second term is 0, because one of its coefficients is 0.

The same arguments yield that the third and fourth term are also 0. Since the potential function
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P (π) is convex, πi,k = 1
K for all i and k is the unique Nash equilibrium.

To prove (2), first notice that π∗ is a critical point for Si(πi). It follows that π∗ solves the

equations E[(π∗TZ+`)π∗TDiag(γ)π∗i (Zh−ZK)1Ai +(π∗TZ+`)2(π∗hγh−(1−
∑K−1

k=1 π
∗
k)γK)1Ai ] = 0

for every h. If `i = `j = ` and πi = πj = π∗, then Ai,j = Ai. Hence, the sum of the first two terms

in the derivative of P (π) and the sum of the last two terms are both 0. From the convexity of P (π)

it follows that πi = π∗ for each i is the unique Nash equilibrium.

Lemma B.2. Assume K = 2. Under Assumptions A.2 and A.4, ∂2P
∂πi,1πj,1

(π) > 0 for 1 ≤ i 6= j ≤ N
and π ∈ XN .

Proof. A simple calculation shows that 1
λ2M

∂2P
∂πi,1πj,1

(π) = E[(γ1(`i + 2πi,1Z1 + (1 − 2πi,1)Z2)(`j +

2πj,1Z1+(1−2πj,1)Z2)+γ2(`i+(2πi,1−1)Z1+2(1−πi,1)Z2)(`j+(2πj,1−1)Z1+2(1−πj,1)Z2))1Ai∩Aj ],

where Ai := {π1,1Z1 + (1 − πi,1)Z2 + `i ≤ 0} and Aj := {πj,1Z1 + (1 − πj,1)Z2 + `j ≤ 0}. Assume

`i = `j = 0. From the spherical symmetry of the distribution of Z, it follows that the distribution is

uniform along every circle. Next, we consider the change of variable (Z1, Z2) = (ρ cos(t), ρ sin(t)).

In terms of the new variables (ρ, t), if πi,1 > πj,1, the integration region Ai ∩Aj translates into the

range (0,+∞)× [tl, tr] := (0,+∞)×
[
arctan

(
− πj,1

1−πj,1

)
+ π, arctan

(
− πi,1

1−πi,1

)
+ 2π

]
. For a fixed ρ,

the integral over t reduces to

γ1(2(tr − tl) + 2(−(πi,1 + πj,1) + 4πi,1πj,1)(2tr + cos(2tr)− 2tl − cos(2tl))

+ (2(πi,1 + πj,1)− 1)(sin(2tr)− sin(2tl))) + γ2(· · · ),

up to a positive coefficient. The expression that multiplies γ1 is strictly positive. The same

calculations and arguments hold for the term that multiplies γ2. Hence, the integral over ρ is also

strictly positive. By continuity, the expectation is strictly positive for `1, `2 ≤ ¯̀, for a sufficiently

small ¯̀.

Proof of Theorem 4.4

With a slight abuse of notation, we denote πi,1 simply by πi, and hence πi,2 = 1 − πi. The Nash

equilibrium (π∗1, π
∗
2) solves the system of equations

1

λ2M

∂

∂πi
P (πi, πj) = E

[
2w2

i (πiZ1 + (1− πi)Z2 + `i)(γ1π
2
i + γ2(1− πi)2)(Z1 − Z2)1Ai (B.1)

+ 2w2
i (πiZ1 + (1− πi)Z2 + `i)

2((γ1 + γ2)πi − γ2)1Ai

+ wiwj(πjZ1 + (1− πj)Z2 + `j)(γ1πiπj + γ2(1− πi)(1− πj))(Z1 − Z2)1Ai,j

+ wiwj(πiZ1 + (1− πi)Z2 + `i)(πjZ1 + (1− πj)Z2 + `j)((γ1 + γ2)πj − γ2)1Ai,j

]
= 0

for i = 1, j = 2 and i = 2, j = 1,

where Ai := {π1Z1 + (1−πi)Z2 + `i ≤ 0}, Aj := {πjZ1 + (1−πj)Z2 + `j ≤ 0}, and Ai,j := Ai ∩Aj .
If `2 = `1, then there exists π`1 ∈ (12 ,

γ1+γ2
γ2

) such that π1 = π2 = π`1 is the Nash equilibrium. In

25

 Electronic copy available at: https://ssrn.com/abstract=3345399 



particular, since ∂
∂πi
Si(πi) = 0 for πi = π`1 , both the sum of the first two terms, i.e., ∂

∂πi
Si(πi),

and the sum of the last two terms, i.e., ∂
∂πi
Mi,j(πi, πj), are zero. Consider equation (B.1) where

i = 1, j = 2. For `1 < `2 and π1 = π2 = π`1 , we will show that the sum of the last two terms is

negative, i.e., ∂
∂πi
Mi,j(πi, πj) < 0. This is equivalent to proving that

E

[
(π`1Z1 + (1− π`1)Z2 + `2)(Z1 − Z2)1A1,2

]
E

[
(π`1Z1 + (1− π`1)Z2 + `1)(π`1Z1 + (1− π`1)Z2 + `2)1A1,2

] <

− ((γ1 + γ2)π
`1 − γ2)

(γ1π`1
2

+ γ2(1− π`1)2)
=

E

[
(π`1Z1 + (1− π`1)Z2 + `1)(Z1 − Z2)1A1

]
E

[
(π`1Z1 + (1− π`1)Z2 + `1)21A1

] ,

where the last equality follows from ∂
∂π1

S1(π1) = 0 for π1 = π`1 . Define h(`2) := E[(π`1Z1 +

(1− π`1)Z2 + `2)(Z1 − Z2)1A1,2 ] and k(`2) := E[(π`1Z1 + (1− π`1)Z2 + `1)(π
`1Z1 + (1− π`1)Z2 +

`2)1A1,2 ]. The inequality we want to prove can thus be rewritten as h(`2)
k(`2)

< h(`1)
k(`1)

. Notice that

h(`2) = 1
2
∂
∂πE[(πZ1+(1−π)Z2+`2)

21A1,2 ]|π=π`1= 1
2
∂
∂πE[(n(π)Z1+`2)

21A1,2 ]|π=π`1= E[(n(π`1)Z1+

`2)
2π`1−1
n(π`1 )

Z11A1,2 ], where n(π) = (π2 + (1 − π)2)1/2. Also, k(`2) = E[(n(π`1)Z1 + `1)(n(π`1)Z1 +

`2)1A1,2 ]. Explicit computations show that h′(`2)k(`2) − h(`2)k
′(`2) = (2π`1 − 1)`1(E[Z11A1,2 ]2 −

E[Z2
11A1,2 ]P (A1,2)). It follows from the Cauchy-Schwartz inequality and π`1 > 1

2 that this expres-

sion is negative. Hence, the fraction h(`)
k(`) is decreasing in `, which proves the inequality. In particular,

it follows that ∂
∂π1

P (π1, π2) < 0 for (π1, π2) = (π`1 , π`1). From the convexity of the potential func-

tion P (π1, π2), we get that ∂
∂π1

P (π1, π2) = 0 for (π1, π2) = (π
(0)
1 , π`1), where π

(0)
1 > π`1 . Similarly,

∂
∂π2

P (π1, π2) = 0 for (π1, π2) = (π`2 , π
(0)
2 ), where π

(0)
2 < π`2 . In particular, π

(0)
2 < π`2 < π`1 < π

(0)
1 ,

where the second inequality follows from Proposition 4.2.

Next, we show that the optimal weight π1 of bank 1 is a decreasing function of π2. For a fixed π2,

let π̄1(π2) be the optimal response by bank 1, i.e., ∂
∂π1

P (π̄1(π2), π2) = 0. Differentiating both the left

and right hand side with respect to π2 yields ∂2

∂π1∂π2
P (π̄1(π2), π2) + ∂2

∂π2
1
P (π̄1(π2), π2)× ∂

∂π2
π̄1 = 0.

From the convexity of P and Lemma B.2, it follows that π̄1(π2) is decreasing, and therefore π̄−11 (π1)

is decreasing. Analogously, π̄2(π1) is a decreasing function.

We have already proved that π̄1(π
`1) = π

(0)
1 and π̄2(π

`2) = π
(0)
2 , where π

(0)
2 < π`2 < π`1 < π

(0)
1 .

Notice that π̄−11 (π
(0)
1 ) = π`1 > π

(0)
2 = π̄2(π

`2) > π̄2(π
(0)
1 ). Define π1,r := π̄1(0). It follows that

0 = π̄−11 (π1,r) ≤ π̄2(π1,r). By continuity, there exists π∗1 ∈ (π
(0)
1 , π1,r] such that π̄−11 (π∗1) = π̄2(π

∗
1).

The point (π∗1, π̄2(π
∗
1)) is by definition the Nash equilibrium. Because π∗1 > π`1 and π̄2(π

∗
1) <

π̄2(π
`2) = π

(0)
2 < π`2 , we get the thesis.

Proof of Theorem 5.1

Notice that TC(π) = 2P (π) − S(π). From the proof of Theorem 4.4 we know that ∂
∂π1

(2P −
S)(π

(0)
1 , π`1) < 0. From the convexity of TC(·), it follows that there exists a unique π

(1)
1 such that
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∂
∂π1

TC(π
(1)
1 , π`1) = 0, where π

(1)
1 > π

(0)
1 . Similarly, ∂

∂π2
TC(π`2 , π

(1)
2 ) = 0 for π

(1)
2 < π

(0)
2 . Hence,

π
(1)
2 < π

(0)
2 < π`2 < π`1 < π

(0)
1 < π

(1)
1 .

Given π2, let π̄SP1 (π2) be the minimizer of TC(·, π2), i.e., ∂
∂π1

TC(π̄SP1 (π2), π2) = 0. As in

the proof of Theorem 4.4, differentiating the left and right hand side with respect to π2 yields
∂2

∂π1∂π2
TC(π̄SP1 (π2), π2) + ∂2

∂π2
1
TC(π̄SP1 (π2), π2)× ∂

∂π2
π̄SP1 = 0. It follows that

∂

∂π2
π̄SP1 = −

∂2

∂π1∂π2
TC(π̄SP1 (π2), π2)

∂2

∂π2
1
TC(π̄SP1 (π2), π2)

= −
∂2

∂π1∂π2
P (π̄SP1 (π2), π2)

∂2

∂π2
1
(P − 1/2S)(π̄SP1 (π2), π2)

<
∂

∂π2
π̄1 < 0.

Therefore, 0 > ∂
∂π1

(π̄SP1 )−1 > ∂
∂π1

π̄−11 . Since π̄SP2 (π`2) = π
(1)
2 < π

(0)
2 = π̄2(π

`2) and ∂
∂π2

π̄SP1 <
∂
∂π2

π̄1, we get π̄SP2 < π̄2 on [π`2 , 1]. Analogously, (π̄SP1 )−1 > π̄−11 on [π`1 , πSP1,r ], where πSP1,r :=

π̄SP1 (0). By continuity, there exists π∗,SP1 ∈ (π
(1)
1 , πSP1,r ] such that (π̄SP1 )−1(π∗,SP1 ) = π̄SP2 (π∗,SP1 ) and

π∗,SP1 > π∗1. This completes the proof of the theorem.

Proof of Proposition 5.3

It is enough to observe that ECi(π) + Ti(π) − TC(π) does not depend on πi. Hence, for any π−i

the allocation πi that minimizes ECi(πi, π−i) + Ti(πi, π−i) also minimizes TC(πi, π−i).

Proof of Proposition 5.2

By symmetry, TC∗(d/2− ε) = TC∗(d/2 + ε). It follows that d
2 is a critical point for TC∗(·).

Notice that if ` (resp. `1) is the distance to liquidation for the bank with asset value w and

debt d (resp. w1 := w
2 and d1), then a bank with asset value w2 := w

2 and debt d2 := d − d1 has

distance to liquidation `2 := 2` − `1. Let π∗1(`1) and π∗2(`1) be the allocations in equilibrium for

bank 1 and bank 2 in a system with two banks of equal size w
2 and distance of liquidation `1 and

`2. Next, we prove that ∂
∂`1
π∗1|`1=` = − ∂

∂`1
π∗2|`1=`. Because π∗1(`1) and π∗2(`1) solve the system of

equations ∂
∂π1

P (π1, π2) = 0, ∂
∂π2

P (π1, π2) = 0, differentiating with respect to `1 yields

∂2

∂π1∂`1
P (π∗1, π

∗
2) +

∂2

∂π21
P (π∗1, π

∗
2)

∂

∂`1
π∗1 +

∂2

∂π1∂π2
P (π∗1, π

∗
2)

∂

∂`1
π∗2 = 0, (B.2)

∂2

∂π2∂`1
P (π∗1, π

∗
2) +

∂2

∂π1∂π2
P (π∗1, π

∗
2)

∂

∂`1
π∗1 +

∂2

∂π22
P (π∗1, π

∗
2)

∂

∂`1
π∗2 = 0.

This is a linear system in ∂
∂`1
π∗1 and ∂

∂`1
π∗2. After evaluating its solution at `1 = `, and noticing

that π∗1(`) = π∗2(`), we get that ∂
∂`1
π∗1|`1=` = − ∂

∂`1
π∗2|`1=`.

Consider now TC∗ as a function of (`1, π1, π2). Recall that ∂
∂π1

TC∗|`1=`,π1=π∗1(`),π2=π∗2(`) = 0,
∂
∂π2

TC∗|`1=`,π1=π∗1(`),π2=π∗2(`) = 0. Furthermore, it can be easily verified that ∂2

∂`21
TC∗|`1=`,π1=π∗1(`),π2=π∗2(`) =
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0. It follows that, after evaluating at `1 = `, π1 = π∗1(`), π2 = π∗2(`),

d2

d`21
TC∗ = 2

∂2

∂`1∂π1
TC∗

∂

∂`1
π∗1 + 2

∂2

∂`1∂π2
TC∗

∂

∂`1
π∗2

+
∂2

∂π21
TC∗

(
∂

∂`1
π∗1

)2

+
∂2

∂π22
TC∗

(
∂

∂`1
π∗2

)2

+ 2
∂2

∂π1∂π2
TC∗

∂

∂`1
π∗1

∂

∂`1
π∗2

= 2

(
∂2

∂`1∂π1
TC∗ − ∂2

∂`1∂π2
TC∗

)
∂

∂`1
π∗1

+

(
∂2

∂π21
TC∗ +

∂2

∂π22
TC∗ − 2

∂2

∂π1∂π2
TC∗

)(
∂

∂`1
π∗1

)2

.

From Theorem 4.4 we get that ∂
∂`1
π∗1 < 0. Hence, we need to prove that

2

(
∂2

∂`1∂π1
TC∗ − ∂2

∂`1∂π2
TC∗

)
+

(
∂2

∂π21
TC∗ +

∂2

∂π22
TC∗ − 2

∂2

∂π1∂π2
TC∗

)(
∂

∂`1
π∗1

)
> 0.

Rewrite TC∗ as P+M = 2P−S, where P is the potential function, S the sum of idiosyncratic terms

in the potential funtion and M the mixed term. Since ∂
∂`1
π∗1 solves equations B.2, the expression

simplifies as

2

(
∂2

∂`1∂π1
M − ∂2

∂`1∂π2
M

)
−
(
∂2

∂π21
S +

∂2

∂π22
S

)(
∂

∂`1
π∗1

)
.

It is enough now to show that both terms are positive. ∂2

∂π2
1
S > 0 and ∂2

∂π2
2
S > 0 because the Nash

equilibrium minimizes the idiosyncratic terms of the potential function. For `1 = `, π1 = π∗1(`), π2 =

π∗2(`) we have

∂2

∂`1∂π1
M − ∂2

∂`1∂π2
M = −2w2

1((π∗1)2γ1 + (1− π∗1)2γ2)E[(Z1 − Z2)1{`+π∗1Z1+(1−π∗1)Z2≤0}].

Hence, we are left to show that the expectation is negative. This follows immediately from the fact

that π∗1 ≥ 1
2 .
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