
Do Not Delete 2/6/2010 2:56 PM

137

Testing Open Source Waters: Derivative
Works Under GPLv3

Joseph A. Chern*

INTRODUCTION
Richard Stallman1 has always believed that sharing software

is a moral obligation.2 As such, in 1985, Stallman pioneered a
movement towards free software and created the non-profit Free
Software Foundation (“FSF”), a tax-exempt charity for free
software development.3 The FSF, in turn, created the GNU
General Public License (“GPL”) as an instrument to enforce free
software principles.4 Although this license has become one of the
most popular licenses in the world,5 legal uncertainties continue
to plague its enforceability.6

Among the debated issues of the license, the FSF maintains
that dynamically linking to a GPL-ed library creates a derivative
work under copyright principles subject to the original license.7

* J.D. Candidate 2010, Chapman University School of Law; B.S. Computer

Engineering, University of California, San Diego. I would like to thank Ryan Roemer for
all of his constructive guidance and insight; Pamela Frohreich for her comments and
encouragement; Kyhm Penfil for her edits and suggestions; and the Senior Articles
Editors of the Chapman Law Review for all of their hard work. I also would like to thank
my family for their love and support which made this possible.

1 Software developer of GNU operating system and founder of Free Software
Foundation. See Richard Stallman, Richard Stallman’s Personal Home Page,
http://www.stallman.org/#serious (last visited Oct. 7, 2009).

2 Brian W. Carver, Share and Share Alike: Understanding and Enforcing Open
Source and Free Software Licenses, 20 BERKELEY TECH. L.J. 443, 445 (2005) (describing
Richard Stallman’s belief that proprietary software was incompatible with “the golden
rule”).

3 Free Software Foundation, About Free Software and the GNU Operating System,
http://www.fsf.org/about/ (last visited Oct. 7, 2009).

4 Free Software Foundation, What is free software and why is it so important for
society?, http://www.fsf.org/about/what-is-free-software (last visited Oct. 7, 2009).

5 Free Software Foundation, Licenses, http://www.gnu.org/licenses/
licenses.html#GPL (last visited Oct. 7, 2009) (reporting that the “GNU General Public
License . . . is used by most GNU programs, and by more than half of all free software
packages.”).

6 This article does not address all the legal issues with the GPL, but focuses on the
issue of program linking. See infra Part IV.A; see also John Tsai, For Better or Worse:
Introducing the GNU General Public License Version 3, 23 BERKELEY TECH. L.J. 547, 548
(2008) (analyzing other issues with GPLv3 including software patents and digital rights
management).

7 David Turner, LGPL and Java, (2004), http://www.fsf.org/licensing/licenses/
lgpljava.html.

Do Not Delete 2/6/2010 2:56 PM

138 Chapman Law Review [Vol. 13:137

There is, however, difficulty with this position because dynamic
linking technically does not create a “copy” of any GPL-ed
software.8 This article analyzes perceived arguments both for
and against the FSF position. The legal validity of these
arguments will be evaluated in relation to the current approach
courts have taken with software copyright. This article argues
that the FSF most likely does not have legal support for its
position that dynamic linking to a GPL-ed library creates any
GPL obligation. The implications of this holding are also
examined and alternative consequences are considered.

Part I of this article discusses the development of the FSF
and explores the history of the GPL. Part II briefly describes the
application of the GPL and introduces the FSF’s interpretation of
the extent of that application. Part III explains the technical
complexity of computers, describes how copyright law has
attempted to address the complex nature of software, and revisits
the FSF’s interpretations in depth. Finally, Part IV analyzes
perceived legal issues with the FSF position regarding current
copyright law and examines alternative outcomes.

I. BACKGROUND
Before examining the legal issues with dynamic linking, it is

helpful to understand the rationale behind the GPL and the free
software movement.

A. Beginning of Free Software
The motivation for the free software movement began in

1970 when Stallman worked as a programmer for the
Massachusetts Institute of Technology’s (MIT) Artificial
Intelligence Lab.9 Frustrated with a paper jam in one of the lab
printers, he decided to take action.10 Using the source code11
freely provided with the centralized network printer, he modified
the source code so that other users waiting would be alerted
when the printer was jammed.12 Eventually, the lab received a
new Xerox printer, and Stallman tried to make the same

8 ABRAHAM SILBERSCHATZ ET AL., OPERATING SYSTEM CONCEPTS (8th ed. 2009).
9 SAM WILLIAMS, FREE AS IN FREEDOM: RICHARD STALLMAN’S CRUSADE FOR FREE

SOFTWARE 1–12 (2002), available at http://www.oreilly.com/openbook/freedom.
10 Id. at 3.
11 In computer programming, source code (also known as source or code singularly)

is a collection of human readable statements and declarations that allow programmers to
communicate with computers. Eventually, source code is compiled to object code, which
makes up programs such as Microsoft Word, an Internet Browser, or a game. For more
information on source code and an example of the first source code written in the C
programming language, see BRIAN W. KERNIGHAN & DENNIS M. RITCHIE, THE C
PROGRAMMING LANGUAGE 1–7 (2nd ed. 1988).

12 WILLIAMS, supra note 9, at 3–5.

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 139

improvements;; however, Xerox did not provide the printer’s
source code.13 Xerox supplied the hardware,14 but denied the
release of their source code under contractual obligations.15

Consequently, Stallman set out to challenge the direction of
software culture. In 1984, Stallman left MIT and wrote a
complete operating system16 compatible with UNIX, the standard
operating system at the time, and eventually called it “GNU.”17
In 1985, Stallman founded the FSF to promote the project’s
concept of software freedom.18 The original focus of Stallman and
the FSF was to bring a wholly free operating system into
existence to give users an opportunity to inspect, share, and
modify the source code of the software they used.19 According to
the FSF, open source software hinges on the four software
freedoms: (1) to run a program for any use; (2) to study the code
and modify it for individual needs; (3) to redistribute; and (4) to
improve a program for society.20 It is important to note that the

13 Id. at 4–6.
14 Hardware, as distinguished from software, is the general term to describe the

physical components of technology such as the components that make up a personal
computer, including a printer. Software is the general term to describe the collection or
programs, which function to tell hardware how to act. See WALTER SAVITCH, JAVA: AN
INTRODUCTION TO COMPUTER SCIENCE & PROGRAMMING 4–5 (3d ed. 2004).

15 WILLIAMS, supra note 9, at 6.
16 An operating system is the software component of a computer system, which

acts as a “manager” of the resources in the computer to coordinate between the hardware
and software applications. See SAVITCH, supra note 14, at 8. Common operating systems
are Windows for PC’s and Tiger for Apple computers.

17 Free Software Foundation, Overview of the GNU Operating System,
http://www.gnu.org/gnu/gnu-history.html (last visited Oct. 7, 2009) (“The GNU operating
system is a complete free software system, upward-compatible with Unix. GNU stands for
‘GNU's Not Unix’.”).

18 What is free software and why is it so important for society?, supra note 4 (“in
1985, Stallman started the Free Software Foundation, a nonprofit with the mission of
advocating and educating on behalf of computer users around the world.”).

19 Free Software Foundation, Philosophy of the GNU Project, http://www.gnu.org/
philosophy/philosophy.html (last visited Oct. 7, 2009) (describing the “philosophy of the
free software movement, which is the motivation for our development of the free software
operating system GNU”);; see also Eben Moglen & Richard Stallman, GPL Version 3:
Background to Adoption, http://www.fsf.org/licensing/essays/gpl3-background.html (last
visited Oct. 7, 2009).

20 The Free Software Foundation defines the four essential freedoms:
Free software is a matter of the users' freedom to run, copy, distribute, study,
change and improve the software. More precisely, it means that the program’s
users have the four essential freedoms: The freedom to run the program, for
any purpose (freedom 0). The freedom to study how the program works, and
change it to make it do what you wish (freedom 1). Access to the source code is
a precondition for this. The freedom to redistribute copies so you can help your
neighbor (freedom 2). The freedom to improve the program, and release your
improvements (and modified versions in general) to the public, so that the
whole community benefits (freedom 3). Access to the source code is a
precondition for this.

Free Software Foundation, The Free Software Definition, http://www.gnu.org/philosophy/
free-sw.html (last visited Oct. 7, 2009).

Do Not Delete 2/6/2010 2:56 PM

140 Chapman Law Review [Vol. 13:137

movement’s goals are “primarily social and political, not
technical or economic.”21 The term “free” did not mean
monetarily free, but rather “free” to study and modify.22 FSF’s
often-quoted catchphrase is “‘free’ as in ‘free speech,’ not as in
‘free beer.’”23

B. General Public License, Versions 1–3
When Congress modified the Copyright Act to explicitly

protect software programs,24 the FSF became concerned about its
efforts to promote shared source code since battling a copyright
holder required great time and resources.25 As a result,
“companies, not hackers, held the automatic advantage[,]”26 and
provider corporations effectively could hold a monopoly on their
software. Software typically builds upon the source code from
previous programs;27 therefore, tipping the scales in favor of
large corporations places an arduous burden on the FSF’s goals.
Eventually, the FSF recognized it could actually use copyright
licensing to its advantage.28 A programmer could use a copyright
license to bind others, who modify or distribute the programmer’s
source code, to the license’s terms.29 Specifically, open source
programmers,30 such as Stallman, could license their code with
specific conditions, such as to allow others to copy it so long as
they also publish any modified versions in return.31 This
prompted the FSF to create a universal license making it possible
for many projects to share the same code and keep programs

21 Moglen & Stallman, supra note 19.
22 GNU General Public License, version 2, http://www.gnu.org/licenses/oldlicenses/

gpl-2.0.html (last visited Oct. 7, 2009) [hereinafter General Public License v2.0]; see also
Carver, supra note 2, at 450–53 (using the term “open source” for software that refers to
an open development process).

23 FREE SOFTWARE, FREE SOCIETY: SELECTED ESSAYS OF RICHARD M. STALLMAN 41
(Joshua Gay ed., 2002).

24 Act to Amend the Patent and Trademark Laws, Pub. L. No. 96-517, 94 Stat.
3015, 3028 (1980) (codified as amended at 17 U.S.C. § 117 (2006)); see also discussion
infra Part III.B.

25 WILLIAMS, supra note 9, at 123.
26 Id.
27 SAVITCH, supra note 14, at 12.
28 WILLIAMS, supra note 9, at 123–26.
29 Id.
30 Open source programmers are generally defined as computer software

programmers who use and make software readily available to the public domain. Open
source software is to be distinguished from proprietary software. See Open Source
Initiative, The Open Source Definition, http://opensource.org/docs/osd (last visited Oct. 7,
2009) (describing ten criteria for open source software).

31 WILLIAMS, supra note 9, at 124.

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 141

free.32 Thus, the first version of the GNU General Public License
(“GPLv1”) was born.33

GPLv1 attempted to solve two major problems that
restricted the freedoms of “free software.”34 First, many software
companies released only binary versions—executable, but not
modifiable or understandable by humans—of their source code.35
GPLv1 solved this problem by requiring the release of human
readable source code under a GPLv1 agreement.36 Second, like
the FSF, programmers could also benefit from copyright
protection when they modified source code and redistributed it
with additional restrictions to the existing license.37 GPLv1 did
not allow for combinations with software that might impose
additional restrictions, because this would create a conflict.38

Two years later, the FSF published the second version of the
license called GNU GPL version 2 (“GPLv2”).39 The underlying
idea behind the second version was what the FSF calls
“copyleft.”40 A play on the phrase copyright, “copyleft” promoted
rather than restricted the use of copyrighted materials.41 This
change was best embodied in Section 7 of the GPLv2, which
states that if a user has restrictions—such as court orders,
agreements, or otherwise—placed on GPL-covered software that
may hinder the rights of others, the user cannot distribute that
code at all.42 Most importantly, “copyleft” principles subjected
the author of a GPLv2 piece of software to two requirements: (1)
to license the original and modified versions of the software
under the same license; and (2) to provide the source code to any
user of the license.43 These provisions will be essential to the
derivative work issue discussed below.44

32 Robert W. Gomulkiewicz, General Public License 3.0: Hacking the Free Software

Movement’s Constitution, 42 HOUS. L. REV. 1015, 1024 (2005).
33 The full text General Public License, version 1 is available at

http://www.gnu.org/licenses/old-licenses/gpl-1.0.html (last visited Oct. 7, 2009)
[hereinafter General Public License v1.0].

34 Id.
35 FREE SOFTWARE, FREE SOCIETY, supra note 23, at 4, 170–71.
36 General Public License v1.0, supra note 33.
37 Id.
38 Id.
39 Gomulkiewicz, supra note 32, at 1025–26 (reporting that Stallman created the

second version to clarify misunderstandings and worries).
40 See Free Software Foundation, What is Copyleft?, http://www.gnu.org/copyleft/

copyleft.html (last visited Oct. 14, 2009).
41 Id.
42 General Public License v2.0, supra note 22, at § 7.
43 Id. at §§ 2–3.
44 See discussion infra Part IV.A.

Do Not Delete 2/6/2010 2:56 PM

142 Chapman Law Review [Vol. 13:137

After fourteen years, GPLv2 began to show its age in the
form of many legal problems.45 As a result, the final version of
GPLv3, released on June 29, 2007, attempted to address some of
the legal issues from the previous version while maintaining the
core “copyleft” obligations.46 Among the significant issues,
GPLv3 tried to clarify the scope of the license by introducing
newly defined terms and consolidated requirements.47 GPLv2
borrowed many terms from U.S. copyright law, such as
“derivative works” and “collective works”,48 but this only led to
ambiguities about how far the license should reach.49
Furthermore, because the GPL is meant to be a global license
that can apply in any country regardless of that country’s
copyright laws, the GPLv3 abandoned the term “derivative work”
and redefined the license to meet global standards.50 The new
license also includes “propagate” and “convey” to define what
constitutes distribution51 and tries to clarify whether dynamic
linking falls within the scope of the “copyleft” license.52

II. SOFTWARE AND GPL
The resolution of the legal issues with GPL greatly depends

on the FSF’s ability to advocate for definitions of legal terms as
applied to software. Such definitions have yet to be evaluated by
the courts. In addition, the unique nature of how a GPL is
triggered can effectively limit its scope. This section first
describes that unique nature and then previews the FSF’s legal
interpretations. A more in-depth discussion of the FSF’s
interpretation is revisited in Section IV.C, following a discussion
of current case law.

45 Moglen & Stallman, supra note 19.
46 Not all of the legal issues are addressed here since the list could go on, but

rather the most significant issues to this article will be discussed.
47 Compare Free Software Foundation, GNU Project: GNU General Public License

Version 3, http://www.gnu.org/licenses/gpl-3.0.html (last visited Oct. 14, 2009)
[hereinafter General Public License v3.0], with General Public License v2.0, supra note
22.

48 See General Public License v2.0, supra note 22, at §§ 0, 2(c); 17 U.S.C. § 101
(2006).

49 Carver, supra note 2, at 458–60.
50 Moglen & Stallman, supra note 19; compare GPLv3, supra note 47, at § 0, with

GPLv2, supra note 22, at § 0.
51 General Public License v3.0, supra note 47, at § 0.
52 Tsai, supra note 6, at 566.

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 143

A. Triggering the GPL: “Distribution” and the “Viral” Effect
Pursuant to one of the “copyleft” provisions, modified

versions53 of GPL-ed software are subject to the same license as
the original code54 if released.55 Consequently, critics of the
license have described it as having a “viral effect.”56 The effect of
the license is metaphorically similar to that of a virus because in
order to trigger the effects of the GPL, the only requirement is
that any portion of the software be covered by the GPL.57 If any
portion of the software is covered by a GPL license, the
remaining portions of the code, even if it was intended to be
proprietary, become “infected” with the license.58

Distributing any software under the license can cause this
viral effect.59 In order to use the license for a piece of software,
the author only has to add two elements to his code: (1) “a
copyright notice (such as ‘Copyright 1999 Terry Jones’);;” and (2)
“a statement of copying permission, saying that the program is
distributed under the terms of the GNU General Public
License.”60 When these two elements are present, any
distribution of that code will be subject to the same terms of the
GNU GPL.61 For instance, assume software Program A contains
the two elements and, as a result, is covered under the GPL.
Anyone would be free to use Program A to create Program B.
Accordingly, Program B is “infected” by the GPL of Program A

53 “Modified versions,” as used here, is similar to the “derivative work” concept
that was replaced from GPLv2. The term here assumes the work falls within the GPL
definition of modified work.

54 See Free Software Foundation, supra note 40.
55 Among frequently asked questions, the Free Software Foundation provides:
[t]he GPL does not require you to release your modified version, or any part of
it. You are free to make modifications and use them privately, without ever
releasing them But if you release the modified version to the public in
some way, the GPL requires you to make the modified source code available to
the program's users, under the GPL. Thus, the GPL gives permission to
release the modified program in certain ways, and not in other ways; but the
decision of whether to release it is up to you.

Free Software Foundation, Frequently Asked Questions About the GNU Licenses, Does the
GPL require that source code of modified versions be posted to the public?,
http://www.fsf.org/licensing/licenses/gpl-faq.html#GPLRequireSourcePostedPublic (last
visited Oct. 24, 2009) [hereinafter FSF Frequently Asked Questions].

56 Ron Phillips, Deadly Combinations: A Framework for Analyzing the GPL’s Viral
Effect, 25 J. MARSHALL J. COMPUTER & INFO. L. 487 (2008).

57 General Public License v3.0, supra note 47, at §§ 0, 10 (describing the viral
effect by automating licensing to any downstream recipients for works that are covered,
which means any unmodified programs or worked based on the program).

58 Phillips, supra note 56, at 492.
59 Id. at 492–93; General Public License v3.0, supra note 47, at §§ 0, 10 (describing

the viral effect by automating licensing to any downstream recipients for works that are
covered, which means any unmodified programs or worked based on the program).

60 Free Software Foundation, How to use GNU licenses for your own software,
http://www.gnu.org/licenses/gpl-howto.html (last visited Oct. 24, 2009).

61 Id.

Do Not Delete 2/6/2010 2:56 PM

144 Chapman Law Review [Vol. 13:137

and must, at a minimum, have the same terms. In a simple
situation, Program B typically contains a verbatim copy of
Program A, which makes the license application a legal, rather
than a technical, matter. In any case, the “viral effect” helps to
achieve the goals of the free software movement by ensuring
reciprocation of free software. It is important to note that
neither private use nor modifications of a GPL code creates any
licensing obligation, but obligations do apply if the code is
publicly distributed.62

B. FSF’s Interpretations of Derivative Works
The FSF has been less than clear on its definition of what

creates a derivative work. However, in order to promote the free
software movement and the goals of a GPL, it is important to
draw the line between “infected”63 derivative works and works
that are not “infected” that carry no “copyleft” obligations.

One thing is clear: the FSF has abandoned the term
“derivative work” and has adopted “modified works” essentially
to cover the same principles.64 Although “modified works” is
defined in the latest GPL,65 the scope of the definition remains
ambiguous and is still debated.66 One possible interpretation of
the FSF definition of “modified works” is that the definition
mirrors the scope of the U.S. copyright law’s definition of
derivative work.67 However, the drafters of the GPL seemingly
urge a broader interpretation.68 When answering questions

62 FSF Frequently Asked Questions, supra note 55.
63 See supra Part II.A.
64 See supra Part I.B; compare General Public License v3.0, supra note 47, at § 0

(“The resulting work is called a ‘modified version’ of the earlier work or a work ‘based on’
the earlier work”) with General Public License v2.0, supra note 22, at § 0 (“The ‘Program,’
below, refers to any such program or work, and a ‘work based on the Program’ means
either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications . . . ”).

65 The Free Software Foundation defines modify as:
To ‘modify’ a work means to copy from or adapt all or part of the work in a
fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a ‘modified version’ of the earlier work or a
work ‘based on’ the earlier work.

General Public License v3.0, supra note 47, at § 0.
66 Tsai, supra note 6, at 548, 566–68 (arguing that new language creates new

ambiguities and the open source community is still split over several key issues as to
what is covered under GPL licenses).

67 17 U.S.C. § 101 (2006) (“A work consisting of editorial revisions, annotations,
elaborations, or other modifications which, as a whole, represent an original work of
authorship, is a ‘derivative work.’”);; see also copyright discussion infra Part III.B.1.

68 University of Washington School of Law, Derivative Works,
http://www.law.washington.edu/lct/swp/Law/derivative.html (last visited Dec. 28, 2009)
(arguing GPL drafters urge a broader definition of derivative works than US Copyright
law); see also infra Part III.C; see also Tsai, supra note 6, at 555–56 (outlining a broader
interpretation of the GPLv2 to include both collective works and compilations).

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 145

about whether programs are covered under the license, the FSF
generally leans towards the answer that provides the broadest
coverage.69 Specifically, when dealing with a situation in which
two separate programs are combined,70 each with a different
license, the FSF would argue that in most cases the
programmer/user would be “combining them into one program”
under the GPL.71 However, the FSF has admitted that “[t]his is
a legal question, which ultimately judges will decide.”72

III. PROGRAM LINKING AND COPYRIGHT
The FSF’s acknowledgment that courts ultimately will

decide the scope of GPL licensing suggests the need for an
analysis of the current legal interpretations of copyright
protection by courts. Section III.A begins with a technical primer
on software linking that may affect a court’s treatment of
copyright protection for software. Section III.B examines
traditional copyright law and basic copyright principles and
analyzes courts’ approaches to derivative works. Section III.C
revisits the FSF’s interpretation of “modified works” and focuses
on the role software linking might play in this analysis.

A. Program Linking (Static and Dynamic): Technical
Background
Developers of software often use pre-written code73 and data

when writing their own programs to avoid “reinvent[ing] the
wheel.”74 Software “libraries” are commonly used collections of
reusable code and data that provide “common functions, such as
printing, reading data from a disk, or opening a file.”75 A
computer will at some point “link” the relevant code from the
library with the developer’s own code to create a larger functional

69 FSF Frequently Asked Questions, supra note 55 (asserting adding modules to

GPL programs are also covered, output from GPL covered programs can be covered by
GPL, linking to libraries is also covered); see also infra Part III.C.

70 See discussion infra Part III.A.
71 FSF, Frequently Asked Questions, supra note 55.
72 Id.
73 See SAVITCH, supra note 14, at 12, 18 (stating programs are not typically written

as one piece of code and may consist of several different parts, written by different people,
combining other components that already exist).

74 Alexandra J. Horne, Shared Rights to Source Code: The Copyright Dilemma, 32
SANTA CLARA L. REV. 497, 532 (1992) (“Furthermore, because of the complexity of the
development process, the software developer can argue that the library routines must be
afforded copyright protection because of the economic hardship the developer will face due
to the prohibitive expense required to ‘reinvent the wheel’ for each new development
project.”).

75 Tsai, supra note 6, at 557.

Do Not Delete 2/6/2010 2:56 PM

146 Chapman Law Review [Vol. 13:137

program.76 The timing of this linkage depends on whether the
process is accomplished through dynamic or static linking.77

In computer science, “human readable source code” typically
goes through several steps before it is executed by the compiler.78
Generally, these steps are divided into three “times”: compile
time, load time, and execution time.79 During compile time, the
source code is translated into machine code to create an object
module that is read by the computer.80 What occurs during the
load and execution times vary depending on hardware and
software limitations.81

If an operating system supports only static linking, the
libraries that the source code uses are combined with the object
module during load time.82 Effectively, this is akin to replacing
footnotes in an essay with a copy of the referenced material. The
libraries are treated like another object module that is physically
combined together with the new code into which it was
integrated.83 Conversely, if the operating system allows dynamic
linking, the linking is “postponed until execution time.”84 With
dynamic linking, a “bookmark” is placed in the source code for
each library reference, which indicates how to load the library
code when it is actually being used.85 Under this approach, there
is no actual copy of the library code in the source code, but rather
an address where the code can be accessed when needed.86 The
library and source code remain separate files on disk.87

B. Traditional Copyright Law
As copyright law has developed, it has dynamically embraced

new technologies. For example, courts,88 and eventually
Congress,89 agreed that lithographs and photographs constitute

76 SAVITCH, supra note 14, at 12 (describing the process of connecting several
different pieces of code together as linking).

77 SILBERSCHATZ, supra note 8, at 321.
78 Id. at 318.
79 Id.
80 SAVITCH, supra note 14, at 9 (describing a compiler to translate the high-level

language that humans can understand [source code] into low-level languages [machine
code] that the computer can understand).

81 See SILBERSCHATZ, supra note 8, at 320.
82 See Tsai, supra note 6, at 557; SILBERSCHATZ, supra note 8, at 321.
83 See SILBERSCHATZ, supra note 8, at 828.
84 Id. at 321.
85 Id.
86 See id.
87 See id.
88 See, e.g., Burrow-Giles Lithographic Co. v. Sarony, 111 U.S. 53, 58 (1883)

(holding that there is “no doubt that the Constitution is broad enough to cover an act
authorizing copyright of photographs, so far as they are representatives of original
intellectual conceptions of the author”).

89 17 U.S.C. § 102(a)(5) (2006).

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 147

copyrightable subject matter in the early years. More recently,
Congress convened the National Commission on New
Technological Uses (“CONTU”)90 to thoroughly explore the scope
of copyright protection for software, a concept with which courts
continue to struggle.91 This section will introduce relevant
principles of copyright law as applicable to software and briefly
examine how the courts currently address the changes.

1. Brief Overview of Copyright and Software: Basic
Application

Copyright is the right of an author to control the
reproduction of his or her original expression.92 Whether an
author owns a valid copyright depends, inter alia, on whether the
subject matter is copyrightable.93 Copyrightable subject matter
includes “original works of authorship fixed in any tangible
medium of expression.”94 Works of authorship can include
anything, from literary works such as novels, to musical works
such as compositions and lyrics.95 However, although copyright
law protects the expression of ideas,96 copyrights do not extend to
either the functional elements or the ideas underlying those
expressions; this is an area typically left to patent law.97 Because
of the functional nature of software, Congress has been reluctant
to allow for copyright protection for software. In fact, it was not
until 1980 that Congress approved a statutory amendment to
define a “computer program” in the Copyright Act.98 Following
the decision in Apple Computer, Inc. v. Franklin Computer Corp.,
courts have continued to “reflect Congress’ receptivity to new

90 NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS,
FINAL REPORT (1978).

91 See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1247
(3d Cir. 1983); see also Lotus Dev. Corp. v. Borland Int’l, Inc., 516 U.S. 233 (1996);;
Ticketmaster Corp. v. Tickets.com, Inc., No. CV 99-7654 HLH (BQRX), 2000 WL 525390,
(C.D. Cal. Mar. 27, 2000).

92 ROBERT A. GORMAN & JANE C. GINSBURG, COPYRIGHT CASES AND MATERIALS 12
(7th ed. 2006).

93 17 U.S.C. § 102 (2006).
94 § 102(a); see also Feist Publ’n, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340,

346 (1991) (providing “original works” has not meant novel or unique, but rather
independent creations with a minimal modicum of creativity).

95 § 102(a).
96 Id.
97 § 102(b) (“In no case does copyright protection . . . extend to any idea, procedure,

process, system, method of operation . . . ”);; compare 35 U.S.C. § 101 (2006) (discussing
patentable inventions).

98 Act to Amend the Patent and Trademark Laws, Pub. L. No. 96-517, 94 Stat.
3015, 3028 (1980) (codified as amended at 17 U.S.C. § 117 (2006)); see also Apple
Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1247 (describing that
although computer programs are not expressly listed as a work of authorship, legislative
history suggests that programs were considered copyrightable as literary works and
software was not per se uncopyrightable purely based on functionality).

Do Not Delete 2/6/2010 2:56 PM

148 Chapman Law Review [Vol. 13:137

technology and its desire to encourage, through the copyright
laws, continued imagination, and creativity in computer
programming.”99

Software copyrightability allowed programmers to become
the beneficiaries of exclusive rights including the right to prepare
derivative works.100 The Copyright Act defines a derivative work
as:

[A] work based upon one or more preexisting works, such as a
translation, musical arrangement, dramatization, fictionalization,
motion picture version, sound recording, art reproduction,
abridgement, condensation, or any other form in which a work may be
recast, transformed, or adapted. A work consisting of editorial
revisions, annotations, elaborations, or other modifications which, as a
whole, represent an original work of authorship, is a ‘derivative
work.’101
Historically, “derivative works” have been simpler to identify

in areas such as choreography,102 visual art,103 and literary
sequels.104 Defining a derivative work in the software context
has not been as obvious and finds little clarity in the statutory
definition or case law.105 The recent trend in courts is that
“copyright law today, in practice, affords narrow protection to
software.”106 This may be because “as software patents gain
increasingly broad protection, whatever reasons there once were
for broad copyright protection of computer programs
disappear.”107 Alternatively, copyright law may find difficulty
affording broad protection because of the unique nature of
software and the “inherent difficulty of fitting copyright[s] . . . to
rapidly changing and variously described software technology
approaches.”108

99 Apple Computer, 714 F.2d at 1254.
100 17 U.S.C. § 106 (2006) (enumerating the exclusive rights that the owner of a

valid copyright has and can authorize, including reproduction, preparation of derivative
works, distribution, and public performance of their copyrighted work).

101 17 U.S.C. § 101 (2006).
102 See, e.g., Horgan v. MacMillan, Inc., 789 F.2d 157, 162 (2d Cir. 1986).
103 See, e.g., Lee v. A.R.T. Co., 125 F.3d 580, 581 (7th Cir. 1995).
104 Suntrust Bank v. Houghton Mifflin Co., 268 F.3d 1257, 1259 (11th Cir. 2001).
105 Carver, supra note 2, at 458 (noting the lack of case law and statutes to clarify

derivative works for software).
106 Emanuela Arezzo, Struggling Around the “Natural” Divide: The Protection of

Tangible and Intangible Indigenous Property, 25 CARDOZO ARTS & ENT. L.J. 367, 411
(2007).

107 Mark A. Lemley, Convergence in the Law of Software Copyright?, 10 HIGH TECH.
L.J. 1, 26 (1995).

108 Raymond T. Nimmer, Legal Issues in Open Source and Free Software
Distribution, 885 PLI/P at 33, 91 (2006).

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 149

The difficulty in providing protection for software is further
complicated by the “fair use” exception for copyright protection.109
Essentially, fair use excuses “reasonable unauthorized
appropriations” which is determined by evaluating four factors.110
The four factors are: (1) the purpose and character of the use;111
(2) the nature of the copyrighted work;112 (3) the amount and
substantiality of the portion used in relation to the copyrighted
work;113 and (4) the effect of the use upon the potential market.114
Because copying software is often for the public benefit, to
promote the sciences without substantially impairing the value of
the copied work, “fair use” has provided a venerable defense
against infringement in the software context.115

Despite the struggle to find steady copyright ground in the
computer context, it may be useful to examine how courts have
dealt with the issue thus far.

2. Reverse Engineering and Non-Literal Copying Software
Cases

Recent court cases116 have confirmed that the unique nature
of software117 yields different copyright results with similar fact
patterns. Although there is currently scant case law specifically
discussing whether dynamic linking of software programs can
implicate a derivative work, there is an extensive history of
reverse engineering and non-literal copying software cases that

109 17 U.S.C. § 107 (2006).
110 Id.; see also Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 578 (1994) (“All

[factors] are to be explored, and the results weighed together, in light of the purposes of
copyright.”).

111 § 107(1); see also Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514 (9th
Cir. 1992) (holding intermediate software copying is allowed if it is the only means to get
to the uncopyrighted functional material).

112 § 107(2); see also Harper & Row Publishers, Inc. v. Nation Enters., 471 U.S. 539,
561 (1985) (weighing sub-factors such as whether the copyrighted work has been
published already since right to first publication is important under copyright).

113 § 107(3); see also Harper & Row, 471 U.S. at 601 (Brennan, J., dissenting)
(weighing quality of portion used versus quantity).

114 § 107(4).
115 See Sega, 977 F.2d at 1523 (considering the public benefit that copying software

for the functional requirements would increase creative expressions based on the
unprotected ideas); see also Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596,
607 (9th Cir. 2000) (stating copyright law does not create monopolies over certain markets
and legitimate software competitors may be welcomed so long as it does not merely
supplant the original).

116 This is not an exhaustive list of all computer or software related cases, but
rather a select few that reflect common principles within the scope of this article.

117 See also Andre R. Jaglom, Internet Distribution, E-Commerce and Other
Computer Related Issues: Current Developments in Liability On-Line, Business Methods
Patents and Software Distribution, Licensing and Copyright Protection Questions, SN019
A.L.I.-A.B.A. 535, 606 (stating that “[t]he difficulty is in establishing the scope of
copyright protection, since unlike the traditional kinds of works protected by copyright,
software has a significant functional component”).

Do Not Delete 2/6/2010 2:56 PM

150 Chapman Law Review [Vol. 13:137

are instructive to the ultimate linking question. In a series of
reverse engineering118 cases, courts have held that copyright
infringement existed even when there was no literal copying of
any software, as long as the visuals created by the software were
substantially similar in both idea and expression, and at least an
exact description of the visuals existed in concrete form.119 Some
courts also have determined that there was no copyright
infringement where the software distributed was not copied, even
though there had been intermediate copying to create the
distributed work.120

For example, in Micro Star v. FormGen, Inc., the defendant
owned the copyrights to a popular computer game.121 The game
included an editor, which allowed players to create their own
levels for the game.122 Without literally copying any of
defendant’s software, plaintiff packaged user-created levels for
sale on a CD.123 Plaintiff sought a declaratory judgment that
there was no copyright infringement, while defendant
counterclaimed for a preliminary injunction.124 In reversing the
district court, the Ninth Circuit granted the preliminary
injunction and held that the defendant would likely succeed in
showing that the audiovisual displays generated when running
plaintiff’s distributed levels would infringe on plaintiff’s right to
create derivative works.125

The Court reasoned that the displays would be similar in
both idea and expression.126 Even though the plaintiff did not
literally copy any of the software for the games, the plaintiffs
were infringing on the defendant’s right to create sequels by
creating new tales told by the plaintiff’s new levels.127 However,
the Court clarified that the work the defendant was infringing
upon was the story of the video game characters.128 It conceded
that the software files themselves did not create the derivative

118 Reverse engineering is essentially looking at a final product or output and

working backwards to uncover the underlying elements that make the product or output
work. See Sega, 977 F.2d at 1514.

119 Micro Star v. FormGen Inc., 154 F.3d 1107, 1111–12 (9th Cir. 1998); Worlds of
Wonder, Inc. v. Veritel Learning Sys., Inc., 658 F. Supp. 351, 355 (N.D. Tex. 1986);
Midway Mfg. Co. v. Arctic Int’l., Inc., 704 F.2d 1009, 1013 (7th Cir. 1983).

120 See Sega, 977 F.2d at 1514; Sony, 203 F.3d. at 600 (dismissing copying because
it was only intermediate).

121 Micro Star, 154 F.3d at 1109.
122 Id.
123 Id.
124 Id.
125 Id. at 1114.
126 Id. at 1112.
127 Id.
128 Id.

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 151

works because they did “not, in fact, incorporate any of
[plaintiff’s] protected [software].”129

Similarly, in Worlds of Wonder, Inc. v. Veritel Learning
Systems, Inc., the defendant made cassette tapes compatible for
use with a toy bear named Teddy Ruxpin.130 The toy was
animated by placing a cassette into the back of the animal, thus
moving the eyes, nose, and mouth in synchronization with the
story or song on the tape.131 Although the defendant did not
actually copy any of the plaintiff’s tapes or software, the
Northern District of Texas held that the “series of related
images” that the tapes created were the copyrighted work in this
case.132 Granting a preliminary injunction, the Court held that
the defendant infringed the plaintiff’s right to prepare derivative
works because defendant’s tape cassettes created a modified
work substantially similar to the plaintiff’s “series of related
images.”133 Again, because the defendant’s tapes did not contain
any copyrighted software, the Court emphasized that the
defendant was infringing the story of the toy rather than the
tapes.134

Furthermore, courts have found no copyright infringement
where there was literal intermediate copying of plaintiff’s
software, done only to access uncopyrighted elements of the code.
In Sega Enterprises Ltd. v. Accolade Inc., the defendant copied
the plaintiff’s video game code in order to reverse engineer the
program to discover the requirements for compatibility with
plaintiff’s video game console.135 The defendant used the
information to create its own games to sell in the market.136 In
the software code for these games, the defendant also included
plaintiff’s initialization code137 into a standard header file138 to
allow games to interact with the console code.139

129 Id.
130 Worlds of Wonder, Inc. v. Veritel Learning Sys., Inc., 658 F. Supp. 351, 352

(N.D. Tex. 1986).
131 Id.
132 Id. at 355.
133 Id.
134 Id. at 356.
135 Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514 (9th Cir. 1992).
136 Id. at 1515.
137 Id. at 1516. Initialization code in the context of computer programming is code

that gives variables a value prior to executing the code. For more discussion on
initialization code, see KERNIGHAN & RITCHIE, supra note 11, at 40.

138 Sega, 977 F.2d at 1516. In computer programming, particularly in the C and
C++ programming language, header files are separate files from the source code, which
typically contain declarations for variables, classes, subroutines, and other identifiers.
For more discussion on header files, see KERNIGHAN & RITCHIE, supra note 11, at 33.

139 Sega, 977 F.2d at 1514.

Do Not Delete 2/6/2010 2:56 PM

152 Chapman Law Review [Vol. 13:137

The Ninth Circuit ultimately held that the intermediate
copying was fair use, and therefore was not infringement,
because it was the only means to access the uncopyrightable
elements, namely the compatibility procedure.140 The Court
reasoned that the defendant was only trying to “become a
legitimate competitor in the field of Genesis-compatible video
games” and that consumers would still continue to purchase
multiple video games.141 The Court also found the distribution of
the header files was purely functional and held that “[t]he
initialization code is a functional feature of a Genesis-compatible
game and Accolade may not be barred from using it.”142 The
Court focused on the purely functional aspect of the software
copied in determining that the third party could distribute copies
of the functional code.143

In a similar case, Lewis Galoob Toys, Inc. v. Nintendo of
America, Inc., the plaintiff created a device called a Game Genie,
which was sold for use with a Nintendo Entertainment Video
Game system.144 The device physically attached to the video
games before they were placed into the console, in order to block
data bytes sent to the console and replace the bytes with new
values.145 Effectively, this allowed users to modify aspects of the
game by entering in “cheat codes.”146

The Ninth Circuit held that because the Game Genie acted
only as a window into the computer program, it did not create a
derivative work and there was no infringement.147 The Court
focused on the fact that Game Genie, as distributed, did not
contain any of the Nintendo code in “some concrete or permanent
form” and therefore did not meet the statutory definition of a
derivative work.148 It also did not matter that the visual images
the code generated could be reconstructed when the game was
over by entering the same codes, because the images did not exist

140 Id. at 1518.
141 Id. at 1523; see also Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d

596, 602 (9th Cir. 2000) (applying the analysis in Sega to determine that defendant’s
copying of plaintiff’s code from a video game console was fair use because it was for
purposes of a new video game, different in character, and that defendant was a legitimate
competitor in the market for plaintiff’s games).

142 Sega, 977 F.2d at 1531.
143 See id. at 1516.
144 Lewis Galoob Toys, Inc. v. Nintendo of Am., Inc., 964 F.2d 965, 967 (9th Cir.

1992).
145 Id.
146 Id.
147 Id. at 968; see also Micro Star v. FormGen Inc., 154 F.3d 1107, 1111 (9th Cir.

1998) (distinguishing the case based on the software existing in some permanent or
concrete form).

148 Id.

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 153

permanently at distribution of the Game Genie.149 Despite
copyright law’s lack of protection for functional elements, the
Court also mentioned that the “Game Genie is useless by itself, it
can only enhance” and “such innovations rarely will constitute
infringing derivative works under the Copyright Act.”150

Whether or not one agrees with the holdings of these cases,
they all provide insight into the various approaches of applying
copyright principles to software. Courts first determine whether
a work “incorporates” any portion of the copyrighted work.151 If a
work does not incorporate any protected expression, it cannot be
a derivative.152 Even when protected expressions have been
incorporated into the new work, they must exist in some
“concrete or permanent form” at distribution to be a derivative
work.153 Temporary reproductions following distribution are not
enough to be “concrete or permanent.”154 Furthermore, even
where there is intermediate copying, courts have suggested that
this is permissible so long as it is used purely to gain access to
the unprotected functional elements.155 Finally, attempts to
promote creative expression may also influence how a court
ultimately rules, regardless of any adverse market effect.156
Despite these opinions, the FSF appears to urge a different
approach.157

149 Id. (characterizing the Nintendo case saying once the game was over, the

audiovisual displays generated were gone and as a result, were not permanent).
150 Lewis Galoob Toys, 964 F.2d at 969; see also 17 U.S.C. § 117 (2006) (codifying

the exception that it will not be infringement for the owner of a computer program to
make a copy or adaptation provided the new copy or adaptation is created as an essential
step in the utilization of the computer program).

151 See Micro Star, 154 F.3d at 1110–11.
152 Id. at 1110.
153 Lewis Galoob Toys, 964 F.2d at 967.
154 Micro Star, 154 F.3d at 1111 (characterizing the Nintendo case saying once the

game was over, the audiovisual displays generated were gone and as a result, were not
permanent).

155 Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524 (9th Cir. 1992); see also
17 U.S.C. § 117 (2006) (codifying the exception that it will not be infringement for the
owner of a computer program to make a copy or adaptation provided the new copy or
adaptation is created as an essential step in the utilization of the computer program).

156 Sega, 977 F.2d at 1523 (noting the court is “free to consider the public benefit
resulting from a particular use notwithstanding the fact that the alleged infringer may
gain commercially” and growth of creative expression can serve a public interest);; see also
Lewis Galoob Toys, 964 F.2d at 969 (recognizing that “technology often advances by
improvement rather than replacement” as a reason to exclude works such as spell-
checking or the Game Genie from infringement), and U.S. CONST. art. I, § 8 (granting
Congress power to enact Copyright laws “to promote the progress of science and useful
arts”).

157 See supra Part II.B; see also infra Part III.C.

Do Not Delete 2/6/2010 2:56 PM

154 Chapman Law Review [Vol. 13:137

C. FSF / GPL Interpretation of Static / Dynamic Linking
The FSF, and the drafters of the GPL in particular, likely

would not agree with courts’ treatment of derivative works.158
Terminology aside, whether or not a work is a “derivative” or
“modified” version of a GPL-ed source is critical to the success of
the free software movement.159 Because of the “viral nature” of
the GPL, the narrower the scope of coverage under the GPL, the
fewer “infections” and the fewer GPL-species works there will
be.160 Accordingly, the FSF has attempted to tackle the
problematic issue of what falls under the scope of the license by
addressing program linking.161

Software that uses static linking to a GPL library warrants
minimal discussion that it is a derivative work under any
definition. With software utilizing static linking, an actual copy
of the GPL code is transcribed verbatim into the larger
program.162 Because the software now contains the GPL code “or
a portion of it, either verbatim or with modifications,” the
software is now subject to the provisions of the license.163
Specifically, any future distribution and modification of that
software must now include the source code and will be subject to
the same license.164 This much seems clear.

Dynamic linking has generated a different response to the
question whether a derivative or modified work is subject to
GPL’s “copyleft” provisions.165 This debate occurs in part because
the GPL library is never physically combined with the larger
program in which it is referenced.166 As discussed above, the
GPL library and the larger program exist on completely different
disks, and the GPL software is never technically “modified.”167
Consequently, if no derivative work is created when dynamically
linking to a GPL library, then there is no obligation to follow the
license.168 Under this analysis, software developers are free to
retain proprietary software despite using GPL code.

158 See Derivative Works, supra note 68 (arguing GPL drafters urge a broader
definition of derivative works than US Copyright law).

159 See supra Part II.B.
160 See supra Part II.A.
161 See infra Part IV.A.
162 See supra Part III.A.
163 General Public License v2.0, supra note 22, at § 0.
164 Id. at §§ 1–3.
165 Lothar Determann, Dangerous Liasons – Software Combinations as Derivative

Works? Distribution, Installation, and Execution of Linked Programs Under Copyright
Law, Commercial Licenses, and the GPL, 21 BERKELEY TECH. L.J. 1421, 1458–62, 1488
n.255 (2006) (stating that dynamic linking typically does not create a derivative work).

166 See infra Part IV.A.
167 See supra Part III.A.
168 See Phillips, supra note 56, at 500–02.

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 155

In spite of this, the FSF maintains that dynamic linking to a
GPL library can create a single work that is subject to the GPL
terms.169 When asked about the specific issue of program linking
and its relation to GPLv3, Stallman expressly addressed that:

[I]t doesn’t matter which kind of linking is being used. If there are
two modules that are designed to be run linked together and it’s clear
from the design from one or the other that they are meant to be linked
together then we say they are treated as one program and so I hope
that will make it a little bit clearer although that’s not really a
change, it’s a clarification. That’s what we believe GPL version two
means already.170
The “clarification”171 to which Stallman was referring is a

new express provision in GPLv3.172 Under the new license, the
“copyleft” obligation now extends specifically to “dynamically
linked subprograms” that require an “intimate data
communication or control flow between these subprograms.”173
The FSF appears to take a firm position that dynamic linking
undeniably creates a “copyleft” obligation in a single work.
However, it weakens its position with the self-imposed condition
that the dynamic link must involve an “intimate data
communication.”174 Thus, while the FSF clarifies rather than
changes its view that dynamically linked programs always have
been within the scope of the GPL, courts must now define terms
such as “intimate” to determine the status of dynamically linked
programs in addition to depending upon principles of copyright.

IV. CHALLENGES AND ISSUES WITH GPL AND DYNAMIC LINKING
This section analyzes the likelihood of success of the FSF’s

argument, perhaps simplified, that dynamic linking creates a
derivative work. Infringing upon an exclusive right such as

169 Free Software Foundation, supra note 71 (“If the modules are included in the
same executable file [static linking], they are definitely combined in one program. If
modules are designed to run linked together in a shared address space [dynamic linking],
that almost surely means combining them into one program.”).

170 Richard Stallman, Transcript of Richard Stallman in Torino, (March 18, 2006),
http://www.fsfeurope.org/projects/gplv3/torino-rms-transcript.en.html#q2-linking (last
visited Nov. 11, 2009).

171 Id.
172 General Public License v3.0, supra note 47, at § 5.
173 Id. at § 6 (requiring one to supply corresponding source); Id. at § 1 (defining

corresponding source to include “interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work”).

174 Id. at § 1; see also Tsai, supra note 6, at 566 (arguing that the FSF takes a
“tenuous position, stating first that dynamically linked programs are within the scope of
the [license], then pulling back with a cryptic condition”); Free Software Foundation,
supra note 71 (stating that one relevant condition should be what kind of information is
exchanged).

Do Not Delete 2/6/2010 2:56 PM

156 Chapman Law Review [Vol. 13:137

preparing a derivative work would subject one to the restrictions
of the corresponding license, namely the GPL in this case.
Section IV.A considers the courts’ likely approach to the FSF’s
argument based on current legal theories; Section IV.B examines
the implications of the courts’ likely trend;; and Section IV.C asks
whether that approach is the optimal solution.

A. Is There Any “Copying”?
Courts specifically have never addressed the issue of

whether non-GPL libraries can dynamically link to GPL libraries
with or without the same “viral effect” of the license.175 The FSF
leaves questions unanswered,176 and courts struggle to set
standards for software in general.177 However, as case law on the
issue is presently developing, a court likely would not find that a
dynamically linked program falls within the scope of a GPL
license.

With dynamic linking, the FSF would support a more
technical analysis of the definition of “intimate.”178 If a linked
program, whether dynamic or static, does not share the requisite
“intimate data communication,” there is no “copyleft”
obligation.179 However, as seen above, courts would likely focus
on the abstract inquiry of whether the challenged software is a
derivative work rather than on the underlying technology.180 In
any case, it is unlikely that a court would find an “intimate
relationship” if the court did not also find that the linked
program was a derivative work. When a work does not
incorporate any protected expression, it cannot be a derivative.181
Dynamic linking never incorporates any protected expression; it
only makes references to it.182 One may argue that the operating
system physically incorporates the code somewhere in memory
during runtime when needed; however, while having some merit,
this argument should fail for two reasons.

First, recall that the GPL applies only if the work is
released.183 If a program can be released or distributed
separately from a GPL work, the license obligation does not take

175 In a close case, MySQL AB v. Progress NuSphere, Plaintiff sued Defendant for
copyright infringement by linking code, but the case settled. See Press Release, MySQL,
FAQ on MySQL vs. NuSphere Dispute (Jul. 13, 2001) available at http://www.mysql.com/
news-and-events/generate-article.php?id=75.

176 See infra Part IV.C.
177 See supra Part III.B.
178 See General Public License v3.0, supra note 47.
179 Id.
180 See supra Part III.B.2.
181 Micro Star v. FormGen Inc., 154 F.3d 1107, 1110 (9th Cir. 1998).
182 SILBERSCHATZ, supra note 8, at 268–71.
183 See Free Software Foundation FAQs, supra note 55.

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 157

effect.184 For example, assume Program A is meant to be
maintained as a proprietary word processing program, while
Program B is a GPL-ed printing program. Program A can be
distributed for use to word process without any use of printing
capabilities of Program B. Program A used alone does not
“incorporate” any of Program B’s protected expression. If User X
of Program A then wants to have printing functionality, he can
independently acquire Program B and use it privately with no
obligation. As a result, even if Program A and B are combined in
memory when the computer is running both of them, there is no
“copyleft” obligation for this private use.

Second, even if combined in memory when the user is
running the program, copyright law requires the protected
expression or, in the example above, Program B, to exist in some
“concrete or permanent form.”185 Although virtual computer
memory may be considered “concrete or permanent,”186
temporary recreations are not enough to meet this
requirement.187 The combination will exist only while the
programs run188 and, as in the Nintendo case, as soon as the
programs end, the combination does as well.

A second argument could be made that even references to
GPL-ed code can be considered to “incorporate” the protected
expression. This argument should also fail. Courts have
suggested that even intermediate copying is permissible in order
to take advantage of the unprotected functional elements.189
References do not even rise to the level of intermediate copying,
but are, as the name suggests, merely pointers to a particular
function. Similar to copying an entire video game source code to
find out compatibility functions,190 referencing to GPL-ed code is
a mechanism to use the unprotected function and would likely
not be considered “incorporation” of any protected material.

184 See General Public License v3.0, supra note 47; Viral Code and Vaccination,

supra note 58.
185 See Lewis Galoob Toys, Inc. v. Nintendo of Am., Inc., 964 F.2d 965, 968 (9th Cir.

1992).
186 See also Micro Star v. FormGen Inc., 154 F.3d 1107, 1111 (9th Cir. 1998)

(stating that concrete and permanent forms can exist on CD-ROMs, which are a type of
computer memory).

187 See Lewis Galoob Toys, 964 F.2d at 967 (stating the effects of the toy were
temporary).

188 See SAVITCH, supra note 14, at 5 (stating computer memory is used for
computer’s “intermediate calculations”).

189 See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514 (9th Cir. 1992);
Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d. 596, 600 (9th Cir. 2000)
(dismissing copying because it was only intermediate).

190 Sega, 977 F.2d at 1526.

Do Not Delete 2/6/2010 2:56 PM

158 Chapman Law Review [Vol. 13:137

Finally, fair use factors may weigh in favor of no copyright
infringement for dynamic linking. Even if there is copying in
computer memory, the four fair use factors would likely not favor
the FSF.191 First, the nature and purpose of using GPL-ed code
is typically to promote software efficiency and to create new
programs with additional functionality.192 Second, the nature of
the GPL-ed work is that it already has been published because it
is freely distributed and encourages its use. Third, the amount
copied would be only that which is necessary for the program to
function. Finally, courts have established fair use where the
effect on the market from the copying is to establish legitimate
competition.193 Software vendors could make these arguments in
their favor to establish fair use.

As a result, a court would likely not find that a derivative
work is created simply by dynamic linking because the GPL-ed
code is neither “incorporated” nor exists in a “concrete or
permanent form.” It is hard to imagine that the level of
“intimate data communication” is met when one program is not a
legal derivative of the other. Additionally, if a court finds
“incorporation,” it is likely that the incorporation would be
protected by fair use.

B. Implications Assuming No Obligations
Assuming dynamic linking to GPL code does not impose any

“copyleft” obligations,194 proprietary software vendors can plan to
selectively incorporate open software without further obligation.
However, the free software community would not benefit from
misappropriation of their work products. While pure believers in
free software principles may continue their efforts in providing
an open development model, others who once supported the FSF
for its reciprocal guarantee that they would receive the same
benefit may reconsider. This could result in a range of outcomes,
from a floodgate of legal challenges to a decrease in free software
development. The worst-case scenario might be an end of free
software.195

191 See supra Part III.B.1.
192 Tsai, supra note 6, at 557; SAVITCH, supra note 14, at 12.
193 Sega, 977 F.2d at 1514, 1524.
194 See General Public License v3.0, supra note 47.
195 Free Software Foundation, Copyleft and the GNU GPL, http://www.gnu.org/gnu/

thegnuproject.html (last visited Jan. 11, 2010) (admitting that “to permit such
combinations would open a hole big enough to sink a ship”).

Do Not Delete 2/6/2010 2:56 PM

2009] Derivative Works Under GPLv3 159

C. Alternative Outcome and Implications
Although a court most likely would hold that the distribution

of software that only dynamically links to a copyrighted work is
not itself a derivative work, it is worth exploring legal scenarios
in which a court does impose copyright obligations for such a
distribution.

One possible scenario could use the same principle for which
the FSF is fighting and use it offensively. If dynamic linking
creates derivative works because the operating system combines
the works into shared memory, could the creator of the operating
system equally argue that loading the software into its operating
system creates derivative works and thus subjects users to their
own license? For instance, could Microsoft, owners of the
common operating system Windows, assert that dynamic loading
of libraries in Windows creates a Microsoft licensed product?
Furthermore, the Microsoft license could impose conflicting
restrictions with the FSF such as prohibiting any GPL-ed linking
in its entirety.196

A second scenario may involve two dynamic libraries that
both have the same functionality: lib_GPL, which is GPL-ed, and
lib_BSD, which has no license obligations. Consider Program A
that is distributed for use with either library, but will not
function without one of them. Inevitably, users of Program A
will choose to combine either library, but choosing one over the
other may have entirely different consequences. Can it be
possible that Program A is obligated by the GPL regardless of
which library the user chooses? This likely would lead to yet
another debate between the FSF, who would answer the question
in the affirmative, and proprietary software vendors, who likely
would disagree.

Although the preceding thought experiments also result in
potential problems for the FSF, it is worth considering which
scenario will yield greater benefits for the public.197

CONCLUSION
Software complexities have challenged the legal system to

find workable standards in areas such as copyright law. While
this area is still developing, the software industry has attempted
to define its own responsibilities. However, these responsibilities
may not always find legal support. The FSF, for instance,

196 General Public License v1.0, supra note 33 (stating that GPLv1 does not allow
for combining code with conflicting licenses and thus would result in less possible code
combinations in the world).

197 See supra Part III.B.2.

Do Not Delete 2/6/2010 2:56 PM

160 Chapman Law Review [Vol. 13:137

maintains that dynamic linking, just like static linking, to GPL-
ed software can create a derivative work subject to a GPL license.
Although dynamic and static linking perform the same functional
goals from a programming perspective, their technical differences
may produce different legal implications. To date, there is no
case law addressing this specific issue; however, some opinions
suggest that the FSF has questionable basis to assert that
dynamic linking creates a derivative work. Unlike static linking,
there is no requisite incorporation of protected material to create
a derivative work. Furthermore, other copyright principles such
as “fair use” likely weigh against the FSF’s position. With
potentially both positive and negative consequences for not only
free software but also proprietary software proponents, this
unresolved intersection of technology and copyright law will
provide a rich and interesting source of future legal
developments.

