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The Talbot Carpet

H.F.Talbot, The London and Edinburgh Philosophical Magazine and
Journal of Science, December 1836
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The Talbot Carpet

Diffraction effect caused by plane waves incident to a periodic diffraction
grating

Image of grating is repeated at what is known as the Talbot Length. The
quantity depends on the period a and the wavelength λ, and (Lord
Rayleigh) is

T =
λ

1−
√
1− λ2

a2

≈ 2a2

λ
ifλ << a

At half length we see the same image, with half a period shift

At quarter length we see the same image with half a period and half size,
etc. etc,
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Gauss Sums: an Excursus in Number Theory

Normal Quadratic Gauss Sums

For a, c coprime numbers, the normal quadratic Gauss sums are defined
by

G (a, c) :=
c−1∑
ℓ=0

e2πi
aℓ2

c

C.F.Gauss, Disquisitiones Arithmeticae, 1801.

The Generalized Quadratic Gauss Sums

G (a, b, c) =
c−1∑
ℓ=0

e2πi
aℓ2+bℓ

c

G (a, c) = G (a, 0, c)
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Superoscillating Functions: The Basics

”Superoscillating functions are bandlimited functions which can oscillate
faster than the highest frequency that they contain.”

They have originated in some works of Y. Aharonov and co-authors in
the context of quantum mechanics (weak measurements) and further
studied by M. Berry and co-authors.
Y. Aharonov, D. Albert, L. Vaidman, How the result of a measurement of
a component of the spin of a spin-1/2 particle can turn out to be 100,
Phys. Rev. Lett., (1988)
M. Berry Faster than Fourier, volume in honor of Aharonov’s birthday,
World Sci. (1994)
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Superoscillating Functions: The Basics

Quanta Magazine, May 2022
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Superoscillating Functions: The Basics

Prototypical Example of Superoscillating Function

Fn(x , a) :=
(
cos

(x
n

)
+ ia sin

(x
n

))n

,

where a > 1, n ∈N.
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Superoscillating Functions: The Basics

Proposition

Fn(x , a) can be written in terms of its Fourier coefficients Cj(n, a) as

Fn(x , a) =
n∑

j=0

Cj(n, a)e
i(1−2j/n)x ,

where Cj(n, a) :=
(−1)j

2n

(
n
j

)
(a+ 1)n−j(a− 1)j .
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Superoscillating Functions: The Basics

Theorem

Let Fn(x , a) be as above. Then for every x ∈ R we have

lim
n→∞

Fn(x , a) = e iax ,

and the convergence is uniform on the compact sets in R.

Remark

The term superoscillating comes from the fact that the frequencies
satisfy |1− 2 j

n | ≤ 1, however Fn(x , a) → e iax , a > 1.
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Evolution of Superoscillations

Question:

Consider the Cauchy problem

i
∂ψ(x , t)

∂t
= Hψ(x , t), ψ(x , 0) = Fn(x , a),

where

Hψ(x , t) :=

[
− ∂2

∂x2
+ V (x , t)

]
ψ(x , t).

How do supoeroscillations evolve?
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Evolution of Superoscillations

General strategy:

We consider the Cauchy problem

i∂tψ(t, x) = Hψ(t, x), ψ(0, x) = Fn(x , a)

where H is the Hamiltonian operator of some physical system.

We determine the solution ψn(t, x ; a) of the Cauchy problem using
the Green function associated to the Hamiltonian H

We show that the solution can be written as
ψn(t, x ; a) = U(t, d

dx )(Fn(x ; a)) for U a suitable infinite
order/convolution operator

We show that U acts continuously on the appropriate space of
functions, and use this to calculate the limit of ψn and to prove that
the superoscillatory behavior persists.
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Evolution of Superoscillations

Theorem

The solution of the Cauchy problem

i
∂ψ(x , t)

∂t
=
∂2ψ(x , t)

∂x2
ψ(x , 0) = Fn(x , a),

is given by

ψn(x , t) =
n∑

k=0

Ck(n, a)e
ikj (n)xe−itkj (n)

2

.

Proof: by inspection.
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Evolution of Superoscillations

Theorem

The function

ψn(x , t) =
n∑

k=0

Ck(n, a)e
ikj (n)xe−itkj (n)

2

. (1)

can be written as

ψn(x , t) =
∞∑

m=0

(it)m

m!

d2m

dx2m
Fn(x)

for every x ∈ R and t ∈ R.
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Evolution of Superoscillations

Set

U(x , t) :=
∞∑

m=0

(it)m

m!

d2m

dx2m
;

we have to prove that U(x , t) acts continuously on a function space that
contains Fn(x , a), so that

lim
n→∞

ψn(x , t) = lim
n→∞

U(x , t)Fn(x , a) =

= U(x , t) lim
n→∞

Fn(x , a) = U(x , t)e iax = e iaxe−ia2t .
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Evolution of Superoscillations

Problem

Continuity, on suitable function spaces, of the operator

U(z , t) :=
∞∑

m=0

(it)m

m!

d2m

dz2m

Answer

We now have a full description of continuous linear operators on these
spaces. In particular the operator U(x , t) of the previous slide is indeed
continuous.

Distribution Spaces

The convergence of {Fn(x ; a)} towards e iax is uniform on any compact
set of R, and thus it holds in D′(R,C), but not in S ′(R,C).
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Evolution of Superoscillations

The Dirac Comb and the Poisson Summation Formula

uM(x) :=
2π

M

∑
k∈Z

δ

(
x − 2kπ

M

)
=

∑
k∈Z

e iMkx .

Next Step

Evolve the Dirac Comb, thus modeling a periodic grating along a vertical
axis.
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Evolution of Superoscillations

The Result of the Evolution

The initial value given by the Dirac comb uM(x) = 2π
M

∑
k∈Z δ(x − 2kπ

M )
evolves, in D′(R+

t ×Rx ,C), as

φM(t, x) =
∑
k∈Z

e−i(Mk)2te iMkx

The Arrival of the Gauss Sums

Let q ∈ (N)∗, p ∈ {0, . . . , q − 1} coprime with q and tM,p,q = 2πp
M2q .

Then, in D′, φM(t, x)|{tM,p,q×R} =

= δ(t − tM,p,q)⊗
q−1∑
j=0

G (−p, j , q)(
2π

Mq

∑
k∈Z

δ(x − 2kπq − 2πj

Mq
)).
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Evolution of Superoscillations

The Talbot carpet is a way to optically recover the values of the
generalized Gauss functions. Moreover, such sums support what is
experimentally visible, specifically the vanishing of G (−p, j , q) when
q = 2q′, q′ − j ≡ 1 modulo 2.

t = 1
2
2π
M2 , p = 1, q = 2, j = 0, 1

G (−1, 0, 2)(
2π

2M

∑
Z

δ(x−2kπ

M
))+G (−1, 1, 2)(

2π

2M

∑
Z

δ(x−2kπ

M
− 2π

2M
)) =

= G (−1, 1, 2)(
2π

2M

∑
Z

δ(x − 2kπ

M
− 2π

2M
))
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Superoscillations and Gauss Sums

Key point is that exponentials of arbitrarily large frequencies can be
approximated uniformly by band-limited exponentials. This opens the
way to recuperate the values of the Gauss sums asymptotically from the
values of the Fourier Transform of a band-limited function.
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Superoscillations and Gauss Sums

The Evolution of the Regularized Dirac Comb

Let ψ ∈ C 2(R,C) with compact support. The regularized Dirac comb

x 7→ (uM ∗ ψ)(x) =
[∑
k∈Z

e ikMx ∗ ψ
]
=

[∑
k∈Z

e ikMx ψ̂(kM)
]

(2)

evolves to (t, x) 7→ φM(t, x) ∗ ψ(x) in D ′(R+
t ×Rx ,C), where φM is the

evolution of the Dirac comb.
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Superoscillations and Gauss Sums

Recall Result on Talbot Carpet

φM(t, x)|{tM,p,q×R} =

= δ(t − tM,p,q)⊗
q−1∑
j=0

G (−p, j , q)(
2π

Mq

∑
k∈Z

δ(x − 2kπq − 2πj

Mq
)).

Corollary

With the same notations used up to now, supp(ψ) ⊂ [−1, 1], and
ψ(0) = 1 we obtain

G (−p, j , q) =
Mq

2π
< φM(t, x), ψ(

Mq

2π
(x − 2jπ

Mq
)) >
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Mq
)) >
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Given N,N ′ ∈N∗, ν ∈ {0, ...,N − 1}, ν′ ∈ {0, ...,N ′ − 1} and κ ∈N, let

ωN,N′

ν,ν′ (κ) := exp
(
− 2iπ

(1
2
− ν

N

)(
κ+

(1
2
− ν′

N ′

)))
. (3)

Also set

C = C
p,q,NK ,NK′
k,ν,ν′ :=

(
1
2 + k

q

)NK−ν(
1
2 − k

q

)ν(
1
2 − kp

)N′
K−ν′(

1
2 + kp

)ν′
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The Final Result

Let (NK )K≥1 and (N ′
K )K≥1 be two sequences of strictly positive integers

such that limK→+∞
logNK

K = lim
K→+∞

logN′
K

K = +∞. Then, for any q ∈N∗,

κ ∈ {0, ..., q − 1}, p ∈ {1, ..., q − 1} coprime with q, and ψ ∈ C2(R,C)
with compact support in [−1, 1] such that ψ(0) = 1, there are positive

constants C = C
p,q,NK ,NK′
k,ν,ν′ such that

G (−p, κ, q) = lim
K→+∞

K∑
k=−K

NK∑
ν=0

N′
K∑

ν′=0

Cω
NK ,N

′
K

ν,ν′ (κ) ψ̂
(
2π

(1
2
− ν

NK

))
.
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