The Isomorphism Theorem of Algebraic Logic: a Categorical Perspective

José Gil-Férez
Chapman University

Grothendieck, a Multifarious Giant
Chapman University, Orange (CA)
May 24-28, 2022

Completeness Theorem for CL

- Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$
\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi
$$

Completeness Theorem for CL

- Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$
\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi .
$$

- \vdash_{CL} is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)

Completeness Theorem for CL

- Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$
\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi .
$$

- \vdash_{CL} is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)
- \models_{2} is the consequence relation determined by "for every valuation in $\mathbf{2}$, if Σ is true, then φ is also true."

Completeness Theorem for CL

- Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$
\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi .
$$

- \vdash_{CL} is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)
- \models_{2} is the consequence relation determined by "for every valuation in $\mathbf{2}$, if Σ is true, then φ is also true."
- Reformulation in terms of equations: "for every valuation in 2, if $\{\psi \approx 1: \psi \in \Sigma\}$ is satisfied, then $\varphi \approx 1$ is also satisfied."

Completeness Theorem for CL

- Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$
\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \vDash_{\mathbf{2}} \varphi .
$$

- \vdash_{CL} is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)
- \models_{2} is the consequence relation determined by "for every valuation in $\mathbf{2}$,
if Σ is true, then φ is also true."
- Reformulation in terms of equations: "for every valuation in 2,
if $\{\psi \approx 1: \psi \in \Sigma\}$ is satisfied, then $\varphi \approx 1$ is also satisfied."
- Accordingly, we could rewrite the Completeness Theorem:

$$
\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad\{\psi \approx 1: \psi \in \Sigma\} \models_{2} \varphi \approx 1 .
$$

Abstract deductive relations

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$ such that, for every $X \subseteq S$ and $\varphi \in S$,

1. $X \vdash \varphi$, if $\varphi \in X$,

Abstract deductive relations

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$ such that, for every $X \subseteq S$ and $\varphi \in S$,

1. $X \vdash \varphi$, if $\varphi \in X$,
2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

Abstract deductive relations

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$ such that, for every $X \subseteq S$ and $\varphi \in S$,

1. $X \vdash \varphi$, if $\varphi \in X$,
2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,
3. if $X \subseteq Y$ and $X \vdash \varphi$, then $Y \vdash \varphi$. (It follows from 1 and 2.)

The "deductive trinity"

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

1. $X \vdash \varphi$, if $\varphi \in X$,
2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

The "deductive trinity"

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

1. $X \vdash \varphi$, if $\varphi \in X$,
2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set S is a map $\gamma: \mathcal{P} S \rightarrow \mathcal{P} S$:

1. $X \subseteq \gamma(X)$,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X))=\gamma(X)$.

The "deductive trinity"

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

1. $X \vdash \varphi$, if $\varphi \in X$,
2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set S is a map $\gamma: \mathcal{P} S \rightarrow \mathcal{P} S$:

1. $X \subseteq \gamma(X)$,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X))=\gamma(X)$.

A closure system on a set S is a set $\mathcal{C} \subseteq \mathcal{P} S$ such that

1. $S \in \mathcal{C}$,
2. \mathcal{C} closed under arbitrary intersections.

The "deductive trinity"

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

1. $X \vdash \varphi$, if $\varphi \in X$,
2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set S is a map $\gamma: \mathcal{P} S \rightarrow \mathcal{P} S$:

1. $X \subseteq \gamma(X)$,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X))=\gamma(X)$.

A closure system on a set S is a set $\mathcal{C} \subseteq \mathcal{P} S$ such that

1. $S \in \mathcal{C}$,
2. \mathcal{C} closed under arbitrary intersections.

Theorem

These three concepts encode the same information. In particular, the closure system associated to an ADR \vdash is the set of its theories, $\mathrm{Th}(\vdash)$.

The "deductive trinity"

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

1. $X \vdash \varphi$, if $\varphi \in X$,
2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set S is a map $\gamma: \mathcal{P} S \rightarrow \mathcal{P} S$:

1. $X \subseteq \gamma(X)$,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X))=\gamma(X)$.

A closure system on a set S is a set $\mathcal{C} \subseteq \mathcal{P} S$ such that

1. $S \in \mathcal{C}$,
2. \mathcal{C} closed under arbitrary intersections.

Theorem

These three concepts encode the same information. In particular, the closure system associated to an ADR \vdash is the set of its theories, $\mathrm{Th}(\vdash)$.

A theory of a logic \vdash on S is a subset X so that if $X \vdash \varphi$ then $\varphi \in X$.
$\operatorname{Th}(\vdash)=\langle\operatorname{Th}(\vdash), \subseteq\rangle$ is a complete lattice.

Example 1: Sentential logics

Example 1: Sentential logics

A sentential logic is a pair $\mathcal{S}=\left\langle\mathrm{Fm}_{\mathcal{L}}, \vdash \mathcal{S}\right\rangle$, where $\vdash \mathcal{\mathcal { S }}$ is an ADR on $\mathrm{Fm}_{\mathcal{L}}$ satisfying

Example 1: Sentential logics

A sentential logic is a pair $\mathcal{S}=\left\langle\mathrm{Fm}_{\mathcal{L}}, \vdash \mathcal{S}\right\rangle$, where $\vdash \mathcal{S}$ is an ADR on $\mathrm{Fm}_{\mathcal{L}}$ satisfying
substitution-invariance: for all Σ, φ, and $\sigma: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{F m}_{\mathcal{L}}$,

$$
\Sigma \vdash \mathcal{S} \varphi \Rightarrow \sigma[\Sigma] \vdash \mathcal{S} \sigma(\varphi) .
$$

Example 1: Sentential logics

A sentential logic is a pair $\mathcal{S}=\left\langle\mathrm{Fm}_{\mathcal{L}}, \vdash \mathcal{S}\right\rangle$, where $\vdash_{\mathcal{S}}$ is an ADR on $\mathrm{Fm}_{\mathcal{L}}$ satisfying
substitution-invariance: for all Σ, φ, and $\sigma: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{F m}_{\mathcal{L}}$,

$$
\Sigma \vdash \mathcal{S} \varphi \quad \Rightarrow \quad \sigma[\Sigma] \vdash \mathcal{S} \sigma(\varphi) .
$$

Sentential logics can be defined in multiple ways:

- via a deductive system (natural, Hilbert system, Gentsen system, ...)
- via a semantics (algebraic, tableaux, model, ...)
- via an abstract description (the smallest one satisfying this and this, ...)

Example 2: Equational logics

Let K be a class of algebras, Π a set of equations, and $\varepsilon_{1} \approx \varepsilon_{2}$ an equation.

$$
\Pi \models_{\mathrm{K}} \varepsilon_{1} \approx \varepsilon_{2}
$$

means that for every algebra $\mathbf{A} \in \mathrm{K}$ and every valuation $v: \mathbf{F m} \rightarrow \mathbf{A}$,
if v satisfies all the equations of Π, then v also satisfies $\varepsilon_{1} \approx \varepsilon_{2}$.

- \models_{K} is the equational logic associated to K .
- \models_{K} is an ADR on the set of equations $\mathrm{Eq}_{\mathcal{L}}$.
- \models_{k} also satisfies
substitution-invariance: for all $\Pi, \varepsilon_{1} \approx \varepsilon_{2}$, and $\sigma: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{F m}_{\mathcal{L}}$,

$$
\Pi \models \kappa \varepsilon_{1} \approx \varepsilon_{2} \quad \Rightarrow \quad \sigma[\Pi] \models_{\kappa} \sigma\left(\varepsilon_{1}\right) \approx \sigma\left(\varepsilon_{2}\right) .
$$

Algebraic semantics

Given a set of equations Ξ in one variable x, we define the translation $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$ as follows:

$$
\tau\{\psi\}=\Xi(\psi / x) \quad \text { and } \quad \tau \Sigma=\bigcup_{\psi \in \Sigma} \tau\{\psi\} .
$$

Algebraic semantics

Given a set of equations Ξ in one variable x, we define the translation $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$ as follows:

$$
\tau\{\psi\}=\Xi(\psi / x) \quad \text { and } \quad \tau \Sigma=\bigcup_{\psi \in \Sigma} \tau\{\psi\}
$$

Definition

A class of algebras K is an algebraic semantics for a sentential logic \mathcal{S} if there exists a set of equations Ξ in one variable x such that for every set of formulas Σ and every formula φ,

$$
\Sigma \vdash_{\mathcal{S}} \varphi \quad \Leftrightarrow \quad \tau \Sigma \models_{\mathrm{K}} \tau\{\varphi\}
$$

Ξ is called a set of defining equations.

Examples

- The class $\{\mathbf{2}\}$ is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.

Examples

- The class $\{\mathbf{2}\}$ is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.
- The class BA of Boolean algebras is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.

Examples

- The class $\{\mathbf{2}\}$ is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.
- The class BA of Boolean algebras is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.
- The class HA of Heyting algebras is an algebraic semantics for IL. Defining set of equations: $\{x \approx 1\}$.

Examples

- The class $\{\mathbf{2}\}$ is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.
- The class BA of Boolean algebras is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.
- The class HA of Heyting algebras is an algebraic semantics for IL. Defining set of equations: $\{x \approx 1\}$.
- The class HA is an algebraic semantics for CL. Defining set of equations: $\{\neg \neg x \approx 1\}$.

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,
so that for any set of formulas $\Sigma \cup\{\varphi\}$ and set of equations $\Pi \cup\left\{\varepsilon_{1} \approx \varepsilon_{2}\right\}$

1. $\Sigma \vdash \mathcal{S} \varphi \Leftrightarrow \tau \Sigma \vDash \kappa \tau\{\varphi\}$,

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,
so that for any set of formulas $\Sigma \cup\{\varphi\}$ and set of equations $\Pi \cup\left\{\varepsilon_{1} \approx \varepsilon_{2}\right\}$

1. $\Sigma \vdash_{\mathcal{S}} \varphi \Leftrightarrow \tau \Sigma \vDash{ }_{\kappa} \tau\{\varphi\}$,
2. $\varepsilon_{1} \approx \varepsilon_{2} \neq \models_{\kappa} \tau \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,
so that for any set of formulas $\Sigma \cup\{\varphi\}$ and set of equations $\Pi \cup\left\{\varepsilon_{1} \approx \varepsilon_{2}\right\}$

1. $\Sigma \vdash_{\mathcal{S}} \varphi \Leftrightarrow \tau \Sigma \vDash{ }_{\kappa} \tau\{\varphi\}$,
2. $\varepsilon_{1} \approx \varepsilon_{2}=\vDash К \tau \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
3. $\Pi \models \kappa \varepsilon_{1} \approx \varepsilon_{2} \Leftrightarrow \rho \Pi \vdash \mathcal{S} \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,
so that for any set of formulas $\Sigma \cup\{\varphi\}$ and set of equations $\Pi \cup\left\{\varepsilon_{1} \approx \varepsilon_{2}\right\}$

1. $\Sigma \vdash_{\mathcal{S}} \varphi \Leftrightarrow \tau \Sigma \models_{\kappa} \tau\{\varphi\}$,
2. $\varepsilon_{1} \approx \varepsilon_{2} \neq \vDash \kappa \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
3. $\Pi \models_{\kappa} \varepsilon_{1} \approx \varepsilon_{2} \quad \Leftrightarrow \quad \rho \Pi \vdash \mathcal{S} \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
4. $\varphi \dashv \vdash \mathcal{S} \rho \tau(\varphi)$.

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,
so that for any set of formulas $\Sigma \cup\{\varphi\}$ and set of equations $\Pi \cup\left\{\varepsilon_{1} \approx \varepsilon_{2}\right\}$

1. $\Sigma \vdash_{\mathcal{S}} \varphi \Leftrightarrow \tau \Sigma \models_{\kappa} \tau\{\varphi\}$,
2. $\varepsilon_{1} \approx \varepsilon_{2} \neq \vDash \kappa \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
3. $\Pi \models_{\kappa} \varepsilon_{1} \approx \varepsilon_{2} \quad \Leftrightarrow \quad \rho \Pi \vdash \mathcal{S} \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
4. $\varphi \dashv \vdash \mathcal{S} \rho \tau(\varphi)$.

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,
so that for any set of formulas $\Sigma \cup\{\varphi\}$ and set of equations $\Pi \cup\left\{\varepsilon_{1} \approx \varepsilon_{2}\right\}$

1. $\Sigma \vdash_{\mathcal{S}} \varphi \Leftrightarrow \tau \Sigma \vDash{ }_{\kappa} \tau\{\varphi\}$,
2. $\varepsilon_{1} \approx \varepsilon_{2}=\vDash \kappa \tau \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
3. $\Pi \models \kappa \varepsilon_{1} \approx \varepsilon_{2} \Leftrightarrow \rho \Pi \vdash \mathcal{S} \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
4. $\varphi \dashv \vdash \mathcal{S} \rho \tau(\varphi)$.

The class K is call an equivalent algebraic semantics of \mathcal{S}.

Algebraizability

A sentential logic \mathcal{S} is algebraizable if there are

- a class of algebras K ,
- a set of equations Ξ in one variable x, inducing $\tau: \mathcal{P}(\mathrm{Fm}) \rightarrow \mathcal{P}(\mathrm{Eq})$
- a set of formulas Γ in two variables x, y, inducing $\rho: \mathcal{P}(\mathrm{Eq}) \rightarrow \mathcal{P}(\mathrm{Fm})$,
so that for any set of formulas $\Sigma \cup\{\varphi\}$ and set of equations $\Pi \cup\left\{\varepsilon_{1} \approx \varepsilon_{2}\right\}$

1. $\Sigma \vdash_{\mathcal{S}} \varphi \Leftrightarrow \tau \Sigma \vDash{ }_{\kappa} \tau\{\varphi\}$,
2. $\varepsilon_{1} \approx \varepsilon_{2}=\vDash \kappa \tau \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
3. $\Pi \models \kappa \varepsilon_{1} \approx \varepsilon_{2} \Leftrightarrow \rho \Pi \vdash \mathcal{S} \rho\left(\varepsilon_{1} \approx \varepsilon_{2}\right)$,
4. $\varphi \dashv \vdash \mathcal{S} \rho \tau(\varphi)$.

The class K is call an equivalent algebraic semantics of \mathcal{S}.
Conditions 3 and 4 follow from 1 and 2.

Examples

- The class $\{\mathbf{2}\}$ is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\left\{x^{\prime} \vee y, y^{\prime} \vee x\right\}$.

Examples

- The class $\{\mathbf{2}\}$ is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\left\{x^{\prime} \vee y, y^{\prime} \vee x\right\}$.
- The class BA is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\left\{x^{\prime} \vee y, y^{\prime} \vee x\right\}$.

Examples

- The class $\{\mathbf{2}\}$ is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\left\{x^{\prime} \vee y, y^{\prime} \vee x\right\}$.
- The class BA is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\left\{x^{\prime} \vee y, y^{\prime} \vee x\right\}$.
- The class HA is an equivalent algebraic semantics for IL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\{x \rightarrow y, y \rightarrow x\}$.

Examples

- The class $\{\mathbf{2}\}$ is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\left\{x^{\prime} \vee y, y^{\prime} \vee x\right\}$.
- The class BA is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\left\{x^{\prime} \vee y, y^{\prime} \vee x\right\}$.
- The class HA is an equivalent algebraic semantics for IL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\{x \rightarrow y, y \rightarrow x\}$.
- The class HA is not an equivalent algebraic semantics for CL.

Blok and Jónsson's formalization

Fm, Eq, Seq, $\ldots \rightarrow \rightarrow S$ an arbitrary set

Blok and Jónsson's formalization

Fm, Eq, Seq, $\ldots \rightarrow \rightarrow S$ an arbitrary set
$\vdash \mathcal{S}, \models_{\kappa}, \vdash_{\mathcal{G}}, \ldots \longrightarrow \rightarrow \vdash$ an abstract deductive relation on S

Blok and Jónsson's formalization

Fm, Eq, Seq, $\ldots \rightarrow m \rightarrow S$ an arbitrary set
$\vdash_{\mathcal{S}}, \models_{\mathrm{K}}, \vdash_{\mathcal{G}}, \ldots \longrightarrow \rightarrow \vdash$ an abstract deductive relation on S
$\operatorname{End}\left(\mathbf{F m}_{\mathcal{L}}\right) \rightarrow m \rightarrow M$ an arbitrary monoid

Blok and Jónsson's formalization

Fm, Eq, Seq, $\ldots \rightarrow \rightarrow S$ an arbitrary set
$\vdash_{\mathcal{S}}, \models_{\kappa}, \vdash_{\mathcal{G}}, \ldots \longrightarrow \rightarrow \vdash$ an abstract deductive relation on S
$\operatorname{End}\left(\mathbf{F m}_{\mathcal{L}}\right) \xrightarrow{ } \rightarrow M$ an arbitrary monoid

An action of a monoid M on a set S is a map $\cdot: M \times S \rightarrow S$ such that

- (M1) $1 \cdot \varphi=\varphi$.
- (M2) $\sigma \cdot\left(\sigma^{\prime} \cdot \varphi\right)=\left(\sigma \sigma^{\prime}\right) \cdot \varphi$.

The elements of the monoid are called substitutions.

Blok and Jónsson's formalization

Fm, Eq, Seq, $\ldots \rightarrow \rightarrow S$ an arbitrary set
$\vdash_{\mathcal{S}}, \models_{\kappa}, \vdash_{\mathcal{G}}, \ldots \longrightarrow \rightarrow \vdash$ an abstract deductive relation on S
$\operatorname{End}\left(\mathbf{F m}_{\mathcal{L}}\right) \xrightarrow{ } \rightarrow M$ an arbitrary monoid

An action of a monoid M on a set S is a map $\cdot: M \times S \rightarrow S$ such that

- (M1) $1 \cdot \varphi=\varphi$.
- (M2) $\sigma \cdot\left(\sigma^{\prime} \cdot \varphi\right)=\left(\sigma \sigma^{\prime}\right) \cdot \varphi$.

The elements of the monoid are called substitutions.
An ADR \vdash on S is substitution-invariant if

$$
X \vdash \varphi \quad \Rightarrow \quad \sigma \cdot X \vdash \sigma \cdot \varphi .
$$

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

- τ and ρ are determined by the images of the singletons,

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

- τ and ρ are determined by the images of the singletons,
- $X \vdash \varphi \Leftrightarrow \tau X \vdash^{\prime} \tau\{\varphi\}$,

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

- τ and ρ are determined by the images of the singletons,
- $X \vdash \varphi \Leftrightarrow \tau X \vdash^{\prime} \tau\{\varphi\}$,
- $X^{\prime} \vdash^{\prime} \varphi^{\prime} \quad \Leftrightarrow \quad \rho X^{\prime} \vdash \rho\left\{\varphi^{\prime}\right\}$,

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

- τ and ρ are determined by the images of the singletons,
- $X \vdash \varphi \Leftrightarrow \tau X \vdash^{\prime} \tau\{\varphi\}$,
- $X^{\prime} \vdash^{\prime} \varphi^{\prime} \Leftrightarrow \rho X^{\prime} \vdash \rho\left\{\varphi^{\prime}\right\}$,
- $X \dashv \rho \tau X$,

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

- τ and ρ are determined by the images of the singletons,
- $X \vdash \varphi \Leftrightarrow \tau X \vdash^{\prime} \tau\{\varphi\}$,
- $X^{\prime} \vdash^{\prime} \varphi^{\prime} \Leftrightarrow \rho X^{\prime} \vdash \rho\left\{\varphi^{\prime}\right\}$,
- $X \dashv \rho \tau X$,
- $X^{\prime} \dashv \vdash^{\prime} \tau \rho X^{\prime}$.

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

- τ and ρ are determined by the images of the singletons,
- $X \vdash \varphi \Leftrightarrow \tau X \vdash^{\prime} \tau\{\varphi\}$,
- $X^{\prime} \vdash^{\prime} \varphi^{\prime} \Leftrightarrow \rho X^{\prime} \vdash \rho\left\{\varphi^{\prime}\right\}$,
- $X \dashv \rho \tau X$,
- $X^{\prime} \dashv \vdash^{\prime} \tau \rho X^{\prime}$.

Equivalences of logics

Translation equivalence

Two ADR's \vdash on S and \vdash^{\prime} on S^{\prime} are translation equivalent if there exist maps $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ and $\rho: \mathcal{P} S^{\prime} \rightarrow \mathcal{P} S$ such that:

- τ and ρ are determined by the images of the singletons,
- $X \vdash \varphi \Leftrightarrow \tau X \vdash^{\prime} \tau\{\varphi\}$,
- $X^{\prime} \vdash^{\prime} \varphi^{\prime} \Leftrightarrow \rho X^{\prime} \vdash \rho\left\{\varphi^{\prime}\right\}$,
- $X \dashv \rho \tau X$,
- $X^{\prime} \dashv \vdash^{\prime} \tau \rho X^{\prime}$.

Lattice equivalence

Suppose \vdash on S and \vdash^{\prime} on S^{\prime}. They are lattice equivalent if their lattices of theories are isomorphic:

$$
\operatorname{Th}(\vdash) \cong \operatorname{Th}\left(\vdash^{\prime}\right)
$$

Questions

Question: Are these two equivalences the same?

Questions

Question: Are these two equivalences the same?

Answer: Yes!

Questions

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Questions

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Theorem (Blok \& Pigozzi)

A propositional logic \mathcal{S} is algebraizable with equivalent algebraic semantics K if and only if there exists an isomorphism between the lattices of theories of $\vdash_{\mathcal{s}}$ and \models_{κ} commuting with substitutions.

Questions

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Theorem (Blok \& Pigozzi)

A propositional logic \mathcal{S} is algebraizable with equivalent algebraic semantics K if and only if there exists an isomorphism between the lattices of theories of $\vdash_{\mathcal{s}}$ and \models_{κ} commuting with substitutions.

Questions

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Theorem (Blok \& Pigozzi)

A propositional logic \mathcal{S} is algebraizable with equivalent algebraic semantics K if and only if there exists an isomorphism between the lattices of theories of $\vdash_{\mathcal{S}}$ and \models_{k} commuting with substitutions.

Structurality

Let M be a monoid and \vdash and \vdash^{\prime} substitution-invariant ADR's on M-sets S and S^{\prime}. A structural translation from S to S^{\prime} is a map $\tau: \mathcal{P} S \rightarrow \mathcal{P} S^{\prime}$ so that:

- τ is determined by the images of the singletons: $\tau \Sigma=\bigcup_{\psi \in \Sigma} \tau\{\psi\}$,
- τ commutes with substitutions: $\tau\{\sigma \cdot \varphi\}=\sigma \cdot \tau\{\varphi\}$.

Galatos and Tsinakis' lifting

$M=\langle M, \star, 1\rangle$ monoid $\leadsto \mathcal{A}_{M}=\langle\mathcal{P} M, \circ,\{1\}\rangle$

$$
a \circ b=\{\sigma \star \tau: \sigma \in a, \tau \in b\}
$$

$\cdot: M \times S \rightarrow S$ action м M mum * : $\mathcal{P} M \times \mathcal{P} S \rightarrow \mathcal{P} S$

$$
a * x=\{\sigma \cdot \varphi: \sigma \in a, \varphi \in x\}
$$

Galatos and Tsinakis' lifting

$M=\langle M, \star, 1\rangle$ monoid $\longrightarrow \nrightarrow \mathcal{A}_{M}=\langle\mathcal{P} M, \circ,\{1\}\rangle$ complete residuated lattice

$$
a \circ b=\{\sigma \star \tau: \sigma \in a, \tau \in b\}
$$

$\cdot: M \times S \rightarrow S$ action mumum * : $\mathcal{P} M \times \mathcal{P} S \rightarrow \mathcal{P} S$

$$
a * x=\{\sigma \cdot \varphi: \sigma \in a, \varphi \in x\}
$$

Galatos and Tsinakis' lifting

$M=\langle M, \star, 1\rangle$ monoid $\longrightarrow \longrightarrow \rightarrow \mathcal{A}_{M}=\langle\mathcal{P} M, \circ,\{1\}\rangle$ complete residuated lattice

$$
a \circ b=\{\sigma \star \tau: \sigma \in a, \tau \in b\}
$$

$\cdot: M \times S \rightarrow S$ action - M mum * : $\mathcal{P} M \times \mathcal{P} S \rightarrow \mathcal{P} S$ biresiduated map

$$
a * x=\{\sigma \cdot \varphi: \sigma \in a, \varphi \in x\}
$$

Galatos and Tsinakis' lifting

$M=\langle M, \star, 1\rangle$ monoid $\leadsto \rightarrow \mathcal{A}_{M}=\langle\mathcal{P} M, \circ,\{1\}\rangle$ complete residuated lattice

$$
a \circ b=\{\sigma \star \tau: \sigma \in a, \tau \in b\}
$$

$\cdot: M \times S \rightarrow S$ action _mmmu * : $\mathcal{P} M \times \mathcal{P} S \rightarrow \mathcal{P} S$ biresiduated map

$$
a * x=\{\sigma \cdot \varphi: \sigma \in a, \varphi \in x\}
$$

Module over a quantale

Fix a quantale $\mathcal{A}=\langle\mathbf{A}, \circ, 1\rangle$, which is a tuple where \mathbf{A} is a complete lattice and $\circ: \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{A}$ is a biresiduated map rendering $\langle A, \circ, 1\rangle$ a monoid.

Galatos and Tsinakis' lifting

$M=\langle M, \star, 1\rangle$ monoid $\longrightarrow \longrightarrow \mathcal{A}_{M}=\langle\mathcal{P} M, \circ,\{1\}\rangle$ complete residuated lattice

$$
a \circ b=\{\sigma \star \tau: \sigma \in a, \tau \in b\}
$$

$\cdot: M \times S \rightarrow S$ action _mmmu * : $\mathcal{P} M \times \mathcal{P} S \rightarrow \mathcal{P} S$ biresiduated map

$$
a * x=\{\sigma \cdot \varphi: \sigma \in a, \varphi \in x\}
$$

Module over a quantale

Fix a quantale $\mathcal{A}=\langle\mathbf{A}, \circ, 1\rangle$, which is a tuple where \mathbf{A} is a complete lattice and $\circ: \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{A}$ is a biresiduated map rendering $\langle A, \circ, 1\rangle$ a monoid.
Def: An \mathcal{A}-module is a pair $\mathbb{R}=\langle\mathbf{R}, *\rangle$, where \mathbf{R} is a complete lattice and *: $\mathbf{A} \times \mathbf{R} \rightarrow \mathbf{R}$ is a biresiduated map satisfying:

Galatos and Tsinakis' lifting

$M=\langle M, \star, 1\rangle$ monoid $\longrightarrow \longrightarrow \mathcal{A}_{M}=\langle\mathcal{P} M, \circ,\{1\}\rangle$ complete residuated lattice

$$
a \circ b=\{\sigma \star \tau: \sigma \in a, \tau \in b\}
$$

$\cdot: M \times S \rightarrow S$ action _mmmu * : $\mathcal{P} M \times \mathcal{P} S \rightarrow \mathcal{P} S$ biresiduated map

$$
a * x=\{\sigma \cdot \varphi: \sigma \in a, \varphi \in x\}
$$

Module over a quantale

Fix a quantale $\mathcal{A}=\langle\mathbf{A}, \circ, 1\rangle$, which is a tuple where \mathbf{A} is a complete lattice and $\circ: \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{A}$ is a biresiduated map rendering $\langle A, \circ, 1\rangle$ a monoid.
Def: An \mathcal{A}-module is a pair $\mathbb{R}=\langle\mathbf{R}, *\rangle$, where \mathbf{R} is a complete lattice and *: $\mathbf{A} \times \mathbf{R} \rightarrow \mathbf{R}$ is a biresiduated map satisfying:
(i) $1 * x=x$,
(ii) $a *(b * x)=(a \circ b) * x$.

Closure operators on \mathcal{A}-modules

A closure operator on an \mathcal{A}-module \mathbb{R} is a map $\gamma: R \rightarrow R$ such that

1. $x \leqslant \gamma x$,
2. $x \leqslant y \quad \Rightarrow \quad \gamma x \leqslant \gamma y$,
3. $\gamma \gamma x=\gamma x$,

Closure operators on \mathcal{A}-modules

A closure operator on an \mathcal{A}-module \mathbb{R} is a map $\gamma: R \rightarrow R$ such that

1. $x \leqslant \gamma x$,
2. $x \leqslant y \quad \Rightarrow \quad \gamma x \leqslant \gamma y$,
3. $\gamma \gamma x=\gamma x$,
4. for all $a \in \mathcal{A}$, and $x \in \mathbb{R}, \quad a * \gamma x \leqslant \gamma(a * x)$.

Closure operators on \mathcal{A}-modules

A closure operator on an \mathcal{A}-module \mathbb{R} is a map $\gamma: R \rightarrow R$ such that

1. $x \leqslant \gamma x$,
2. $x \leqslant y \quad \Rightarrow \quad \gamma x \leqslant \gamma y$,
3. $\gamma \gamma x=\gamma x$,
4. for all $a \in \mathcal{A}$, and $x \in \mathbb{R}, \quad a * \gamma x \leqslant \gamma(a * x)$.
(i.e., $x \vdash_{\gamma} y$ implies $a * x \vdash_{\gamma} a * y$.)

Closure operators on \mathcal{A}-modules

A closure operator on an \mathcal{A}-module \mathbb{R} is a map $\gamma: R \rightarrow R$ such that

1. $x \leqslant \gamma x$,
2. $x \leqslant y \quad \Rightarrow \quad \gamma x \leqslant \gamma y$,
3. $\gamma \gamma x=\gamma x$,
4. for all $a \in \mathcal{A}$, and $x \in \mathbb{R}, \quad a * \gamma x \leqslant \gamma(a * x)$.
(i.e., $x \vdash_{\gamma} y$ implies $a * x \vdash_{\gamma} a * y$.)

The \mathcal{A}-module of theories of γ is $\mathbb{R}_{\gamma}=\left\langle\mathbf{R}_{\gamma},{ }_{\gamma}\right\rangle$, where

- $R_{\gamma}=\{x \in R: \gamma x=x\}$.

Closure operators on \mathcal{A}-modules

A closure operator on an \mathcal{A}-module \mathbb{R} is a map $\gamma: R \rightarrow R$ such that

1. $x \leqslant \gamma x$,
2. $x \leqslant y \quad \Rightarrow \quad \gamma x \leqslant \gamma y$,
3. $\gamma \gamma x=\gamma x$,
4. for all $a \in \mathcal{A}$, and $x \in \mathbb{R}, \quad a * \gamma x \leqslant \gamma(a * x)$.
(i.e., $x \vdash_{\gamma} y$ implies $a * x \vdash_{\gamma} a * y$.)

The \mathcal{A}-module of theories of γ is $\mathbb{R}_{\gamma}=\left\langle\mathbf{R}_{\gamma},{ }_{\gamma}\right\rangle$, where

- $R_{\gamma}=\{x \in R: \gamma x=x\}$.
- $a{ }^{*}{ }_{\gamma} x=\gamma(a * x)$.

\mathcal{A}-Morphisms

An \mathcal{A}-morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$ is a residuated map $\tau: \mathbf{R} \rightarrow \mathbf{S}$ such that

$$
\tau(a * x)=a * \tau x
$$

\mathcal{A}-Morphisms

An \mathcal{A}-morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$ is a residuated map $\tau: \mathbf{R} \rightarrow \mathbf{S}$ such that

$$
\tau(a * x)=a * \tau x
$$

Canonical projection of a closure operator
If γ is a closure operator on \mathbb{R}, define $\dot{\gamma}: R \rightarrow R_{\gamma}$ as $\dot{\gamma} x=\gamma x$.
Then, $\dot{\gamma}$ is an \mathcal{A}-morphism:

$$
\dot{\gamma}: \mathbb{R} \rightarrow \mathbb{R}_{\gamma} .
$$

\mathcal{A}-Morphisms

An \mathcal{A}-morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$ is a residuated map $\tau: \mathbf{R} \rightarrow \mathbf{S}$ such that

$$
\tau(a * x)=a * \tau x
$$

Canonical projection of a closure operator
If γ is a closure operator on \mathbb{R}, define $\dot{\gamma}: R \rightarrow R_{\gamma}$ as $\dot{\gamma} x=\gamma x$.
Then, $\dot{\gamma}$ is an \mathcal{A}-morphism:

$$
\dot{\gamma}: \mathbb{R} \rightarrow \mathbb{R}_{\gamma}
$$

Slogan: A logic is an epimorphism in a category of modules (over a quantale).

Examples:

If $\mathcal{A}_{\mathcal{L}}$ is the quantale determined by the monoid $\operatorname{End}\left(\mathbf{F m}_{\mathcal{L}}\right)$ and \mathbb{R} and \mathbb{S} are the $\mathcal{A}_{\mathcal{L}}$-modules determined by $\mathrm{Fm}_{\mathcal{L}}$ and $\mathrm{Eq}_{\mathcal{L}}$, then

Examples:

If $\mathcal{A}_{\mathcal{L}}$ is the quantale determined by the monoid $\operatorname{End}\left(\mathbf{F m}_{\mathcal{L}}\right)$ and \mathbb{R} and \mathbb{S} are the $\mathcal{A}_{\mathcal{L}}$-modules determined by $\mathrm{Fm}_{\mathcal{L}}$ and $\mathrm{Eq}_{\mathcal{L}}$, then

- every $\mathcal{A}_{\mathcal{L}}$-morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$ is determined by a set of equations Ξ in one variable x in the following way: $\tau\{\varphi\}=\Xi(\varphi / x)$;

Examples:

If $\mathcal{A}_{\mathcal{L}}$ is the quantale determined by the monoid $\operatorname{End}\left(\mathbf{F m}_{\mathcal{L}}\right)$ and \mathbb{R} and \mathbb{S} are the $\mathcal{A}_{\mathcal{L}}$-modules determined by $\mathrm{Fm}_{\mathcal{L}}$ and $\mathrm{Eq}_{\mathcal{L}}$, then

- every $\mathcal{A}_{\mathcal{L}}$-morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$ is determined by a set of equations Ξ in one variable x in the following way: $\tau\{\varphi\}=\Xi(\varphi / x)$;
- every $\mathcal{A}_{\mathcal{L}}$-morphism $\rho: \mathbb{S} \rightarrow \mathbb{R}$ is determined by a set of formulas Γ in two variables x, y in the following way: $\rho\{\delta \approx \varepsilon\}=\Gamma(\delta / x, \varepsilon / y)$.

Interpretability and representability

Def: Given \mathcal{A}-modules \mathbb{R} and \mathbb{S}, and closure operators γ and δ on \mathbb{R} and \mathbb{S} :

- an interpretation of γ into δ is a morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$, satisfying

$$
\forall x, x^{\prime} \in R, \quad x \leqslant \gamma\left(x^{\prime}\right) \Leftrightarrow \tau x \leqslant \delta\left(\tau x^{\prime}\right)
$$

Interpretability and representability

Def: Given \mathcal{A}-modules \mathbb{R} and \mathbb{S}, and closure operators γ and δ on \mathbb{R} and \mathbb{S} :

- an interpretation of γ into δ is a morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$, satisfying

$$
\forall x, x^{\prime} \in R, \quad x \leqslant \gamma\left(x^{\prime}\right) \Leftrightarrow \tau x \leqslant \delta\left(\tau x^{\prime}\right)
$$

- a representation of γ into δ is a monomorphism $\tau: \mathbb{R}_{\gamma} \hookrightarrow \mathbb{S}_{\delta}$.

Interpretability and representability

Def: Given \mathcal{A}-modules \mathbb{R} and \mathbb{S}, and closure operators γ and δ on \mathbb{R} and \mathbb{S} :

- an interpretation of γ into δ is a morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$, satisfying

$$
\forall x, x^{\prime} \in R, \quad x \leqslant \gamma\left(x^{\prime}\right) \Leftrightarrow \tau x \leqslant \delta\left(\tau x^{\prime}\right)
$$

- a representation of γ into δ is a monomorphism $\tau: \mathbb{R}_{\gamma} \hookrightarrow \mathbb{S}_{\delta}$.

Interpretability and representability

Def: Given \mathcal{A}-modules \mathbb{R} and \mathbb{S}, and closure operators γ and δ on \mathbb{R} and \mathbb{S} :

- an interpretation of γ into δ is a morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$, satisfying

$$
\forall x, x^{\prime} \in R, \quad x \leqslant \gamma\left(x^{\prime}\right) \Leftrightarrow \tau x \leqslant \delta\left(\tau x^{\prime}\right)
$$

- a representation of γ into δ is a monomorphism $\tau: \mathbb{R}_{\gamma} \mapsto \mathbb{S}_{\delta}$.

Remark:

- Interpretable \cong having an algebraic semantics.

Interpretability and representability

Def: Given \mathcal{A}-modules \mathbb{R} and \mathbb{S}, and closure operators γ and δ on \mathbb{R} and \mathbb{S} :

- an interpretation of γ into δ is a morphism $\tau: \mathbb{R} \rightarrow \mathbb{S}$, satisfying

$$
\forall x, x^{\prime} \in R, \quad x \leqslant \gamma\left(x^{\prime}\right) \Leftrightarrow \tau x \leqslant \delta\left(\tau x^{\prime}\right)
$$

- a representation of γ into δ is a monomorphism $\tau: \mathbb{R}_{\gamma} \mapsto \mathbb{S}_{\delta}$.

Remark:

- Interpretable \cong having an algebraic semantics.
- Representable \cong there is an embedding of the lattices of theories, commuting with substitutions.

Interpretability and representability

Proposition

Every interpretation induces a unique representation.

Interpretability and representability

Proposition

Every interpretation induces a unique representation.

Theorem

An \mathcal{A}-module \mathbb{P} is projective if and only if every representation of a closure operator on \mathbb{P} into another closure operator is induced by an interpretation.

Interpretability and representability

Proposition

Every interpretation induces a unique representation.

Theorem

An \mathcal{A}-module \mathbb{P} is projective if and only if every representation of a closure operator on \mathbb{P} into another closure operator is induced by an interpretation.

Theorem

The Isom. Theorem hods for an \mathcal{A}-module \mathbb{R} if and only if \mathbb{R} is projective.

π-Institutions

The idea of a π-institution is that of a logic that varies along time:

$$
\mathcal{I}=\left\langle\mathcal{S i g n}, \text { Sen, }\left\{\gamma_{\Sigma}: \Sigma \in \operatorname{Sign}\right\}\right\rangle
$$

π-Institutions

The idea of a π-institution is that of a logic that varies along time:

$$
\mathcal{I}=\left\langle\mathcal{S i g n}, \text { Sen, }\left\{\gamma_{\Sigma}: \Sigma \in \operatorname{Sign}\right\}\right\rangle
$$

- Sign is a category (the category of signatures and substitutions)

π-Institutions

The idea of a π-institution is that of a logic that varies along time:

$$
\mathcal{I}=\left\langle\mathcal{S i g n}, \text { Sen, }\left\{\gamma_{\Sigma}: \Sigma \in \operatorname{Sign}\right\}\right\rangle
$$

- Sign is a category (the category of signatures and substitutions)
- Sen: $\mathcal{S i g n} \rightarrow \mathcal{S}$ et is a functor (the functor of sentences)

π-Institutions

The idea of a π-institution is that of a logic that varies along time:

$$
\mathcal{I}=\left\langle\mathcal{S i g n}, \text { Sen, }\left\{\gamma_{\Sigma}: \Sigma \in \operatorname{Sign}\right\}\right\rangle
$$

- Sign is a category (the category of signatures and substitutions)
- Sen: $\mathcal{S i g n} \rightarrow \mathcal{S}$ et is a functor (the functor of sentences)
- γ_{Σ} is a closure operator on $\operatorname{Sen} \Sigma$, for every $\Sigma \in \mathcal{S i g n}$

π-Institutions

The idea of a π-institution is that of a logic that varies along time:

$$
\mathcal{I}=\left\langle\mathcal{S i g n}, \text { Sen, }\left\{\gamma_{\Sigma}: \Sigma \in \operatorname{Sign}\right\}\right\rangle
$$

- Sign is a category (the category of signatures and substitutions)
- Sen : $\mathcal{S i g n} \rightarrow \mathcal{S}$ et is a functor (the functor of sentences)
- γ_{Σ} is a closure operator on $\operatorname{Sen} \Sigma$, for every $\Sigma \in \operatorname{Sign}$
- for all $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ and $X \subseteq \operatorname{Sen} \Sigma$,

$$
\operatorname{Sen}(\sigma)\left[\gamma_{\Sigma}(X)\right] \subseteq \gamma_{\Sigma^{\prime}}(\operatorname{Sen}(\sigma)[X])
$$

Abstractions

Abstractions

Modules over quantaloids

Def: A quantaloid is an enriched category \mathcal{Q} over the cat. $\mathcal{S} \ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee-complete lattice;
- composition $\mathcal{Q}(B, C) \times \mathcal{Q}(A, B) \xrightarrow{\circ} \mathcal{Q}(A, C)$ is biresiduated.

Modules over quantaloids

Def: A quantaloid is an enriched category \mathcal{Q} over the cat. $\mathcal{S} \ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee-complete lattice;
- composition $\mathcal{Q}(B, C) \times \mathcal{Q}(A, B) \xrightarrow{\circ} \mathcal{Q}(A, C)$ is biresiduated.

Def: A module over a quantaloid \mathcal{Q} is an enriched functor $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$. (Notation: For every $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{T} x=T(a) x$.)

Modules over quantaloids

Def: A quantaloid is an enriched category \mathcal{Q} over the cat. $\mathcal{S} \ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee-complete lattice;
- composition $\mathcal{Q}(B, C) \times \mathcal{Q}(A, B) \xrightarrow{\circ} \mathcal{Q}(A, C)$ is biresiduated.

Def: A module over a quantaloid \mathcal{Q} is an enriched functor $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$. (Notation: For every $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{T} x=T(a) x$.)

- for every $A \in \mathcal{Q}, \quad T A$ is a \bigvee-complete lattice;

Modules over quantaloids

Def: A quantaloid is an enriched category \mathcal{Q} over the cat. $\mathcal{S} \ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee-complete lattice;
- composition $\mathcal{Q}(B, C) \times \mathcal{Q}(A, B) \xrightarrow{\circ} \mathcal{Q}(A, C)$ is biresiduated.

Def: A module over a quantaloid \mathcal{Q} is an enriched functor $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$. (Notation: For every $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{T} x=T(a) x$.)

- for every $A \in \mathcal{Q}, \quad T A$ is a \bigvee-complete lattice;
- for every $A, B \in \mathcal{Q}, \quad *_{T}: \mathcal{Q}(A, B) \times T A \rightarrow T B$ is biresiduated;

Modules over quantaloids

Def: A quantaloid is an enriched category \mathcal{Q} over the cat. $\mathcal{S} \ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee-complete lattice;
- composition $\mathcal{Q}(B, C) \times \mathcal{Q}(A, B) \xrightarrow{\circ} \mathcal{Q}(A, C)$ is biresiduated.

Def: A module over a quantaloid \mathcal{Q} is an enriched functor $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$. (Notation: For every $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{T} x=T(a) x$.)

- for every $A \in \mathcal{Q}, \quad T A$ is a \bigvee-complete lattice;
- for every $A, B \in \mathcal{Q}, \quad *_{T}: \mathcal{Q}(A, B) \times T A \rightarrow T B$ is biresiduated;
- for every $A \in \mathcal{Q}, \quad 1_{A} *_{T} x=x$;

Modules over quantaloids

Def: A quantaloid is an enriched category \mathcal{Q} over the cat. $\mathcal{S} \ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee-complete lattice;
- composition $\mathcal{Q}(B, C) \times \mathcal{Q}(A, B) \xrightarrow{\circ} \mathcal{Q}(A, C)$ is biresiduated.

Def: A module over a quantaloid \mathcal{Q} is an enriched functor $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$. (Notation: For every $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{T} x=T(a) x$.)

- for every $A \in \mathcal{Q}, \quad T A$ is a \bigvee-complete lattice;
- for every $A, B \in \mathcal{Q}, \quad *_{T}: \mathcal{Q}(A, B) \times T A \rightarrow T B$ is biresiduated;
- for every $A \in \mathcal{Q}, \quad 1_{A} *_{T} x=x$;
- for every $a: A \rightarrow B, b: B \rightarrow C$ in \mathcal{Q}, and $x \in T A$,

$$
(b \circ a) *_{T} x=b *_{T}\left(a *_{T} x\right) .
$$

Modules over quantaloids

Def: A quantaloid is an enriched category \mathcal{Q} over the cat. $\mathcal{S} \ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee-complete lattice;
- composition $\mathcal{Q}(B, C) \times \mathcal{Q}(A, B) \xrightarrow{\circ} \mathcal{Q}(A, C)$ is biresiduated.

Def: A module over a quantaloid \mathcal{Q} is an enriched functor $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$. (Notation: For every $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{T} x=T(a) x$.)

- for every $A \in \mathcal{Q}, \quad T A$ is a \bigvee-complete lattice;
- for every $A, B \in \mathcal{Q}, \quad *_{T}: \mathcal{Q}(A, B) \times T A \rightarrow T B$ is biresiduated;
- for every $A \in \mathcal{Q}, \quad 1_{A} *_{T} x=x$;
- for every $a: A \rightarrow B, b: B \rightarrow C$ in \mathcal{Q}, and $x \in T A$,

$$
(b \circ a) *_{T} x=b *_{T}\left(a *_{T} x\right) .
$$

Def: A \mathcal{Q}-morphism between \mathcal{Q}-modules T and T^{\prime} is a natural transformation $\tau: T \dot{\rightarrow} T^{\prime}$ so that every component is residuated $\tau_{A}: T A \rightarrow T^{\prime} A$.

Closure operator and its module of theories

Def: A closure operator on a \mathcal{Q}-module is a family $\gamma=\left\{\gamma_{A}: T A \rightarrow T A\right\}_{A \in \mathcal{Q}}$

- γ_{A} is a closure operator on the lattice $T A$;
- $\forall a: A \rightarrow B$ in $\mathcal{Q}, \forall x \in T A, \quad a *_{T} \gamma_{A} x \leqslant \gamma_{B}\left(a *_{T} x\right)$.

Closure operator and its module of theories

Def: A closure operator on a \mathcal{Q}-module is a family $\gamma=\left\{\gamma_{A}: T A \rightarrow T A\right\}_{A \in \mathcal{Q}}$

- γ_{A} is a closure operator on the lattice $T A$;
- $\forall a: A \rightarrow B$ in $\mathcal{Q}, \forall x \in T A, \quad a *_{T} \gamma_{A} x \leqslant \gamma_{B}\left(a *_{T} x\right)$.

Given a closure operator γ on a \mathcal{Q}-module T, we define $T_{\gamma}: \mathcal{Q} \rightarrow \mathcal{S} \ell$
the \mathcal{Q}-module of the theories of γ

- $T_{\gamma} A=(T A)_{\gamma_{A}}=\left\{x \in T A: \gamma_{A} x=x\right\}$;
- for all $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{\gamma} x=\gamma_{B}\left(a *_{T} x\right)$.

Closure operator and its module of theories

Def: A closure operator on a \mathcal{Q}-module is a family $\gamma=\left\{\gamma_{A}: T A \rightarrow T A\right\}_{A \in \mathcal{Q}}$

- γ_{A} is a closure operator on the lattice $T A$;
- $\forall a: A \rightarrow B$ in $\mathcal{Q}, \forall x \in T A, \quad a *_{T} \gamma_{A} x \leqslant \gamma_{B}\left(a *_{T} x\right)$.

Given a closure operator γ on a \mathcal{Q}-module T, we define $T_{\gamma}: \mathcal{Q} \rightarrow \mathcal{S} \ell$
the \mathcal{Q}-module of the theories of γ

- $T_{\gamma} A=(T A)_{\gamma_{A}}=\left\{x \in T A: \gamma_{A} x=x\right\}$;
- for all $a: A \rightarrow B$ in \mathcal{Q} and $x \in T A, \quad a *_{\gamma} x=\gamma_{B}\left(a *_{T} x\right)$.

Every closure operator γ on a \mathcal{Q}-module T induces an epi in \mathcal{Q}-Mod:

$$
\dot{\gamma}: T \rightarrow T_{\gamma} .
$$

Grothendieck construction

The Grothendieck construction of a \mathcal{Q}-module $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$ is the category $\int T$:

- Objects: $\langle A, x\rangle$ with $A \in \mathcal{Q}$ and $x \in T A$.
- Morphisms: $\langle a, i\rangle:\langle A, x\rangle \rightarrow\langle B, y\rangle, a: A \rightarrow B$ is in \mathcal{Q} and $a *_{T} x \leqslant y$.
- Composition:

$$
\langle A, x\rangle \xrightarrow{\langle a, i\rangle}\langle B, y\rangle \xrightarrow{\langle b, j\rangle}\langle C, z\rangle
$$

Grothendieck construction

The Grothendieck construction of a \mathcal{Q}-module $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$ is the category $\int T$:

- Objects: $\langle A, x\rangle$ with $A \in \mathcal{Q}$ and $x \in T A$.
- Morphisms: $\langle a, i\rangle:\langle A, x\rangle \rightarrow\langle B, y\rangle, a: A \rightarrow B$ is in \mathcal{Q} and $a *_{T} x \leqslant y$.
- Composition:

$$
\langle A, x\rangle \xrightarrow{\langle a, i\rangle}\langle B, y\rangle \xrightarrow{\langle b, j\rangle}\langle C, z\rangle
$$

- The first projection $\pi: \int T \rightarrow \mathcal{Q}$ is a split fibration.

Grothendieck construction

The Grothendieck construction of a \mathcal{Q}-module $T: \mathcal{Q} \rightarrow \mathcal{S} \ell$ is the category $\int T$:

- Objects: $\langle A, x\rangle$ with $A \in \mathcal{Q}$ and $x \in T A$.
- Morphisms: $\langle a, i\rangle:\langle A, x\rangle \rightarrow\langle B, y\rangle, a: A \rightarrow B$ is in \mathcal{Q} and $a *_{T} x \leqslant y$.
- Composition:

$$
\langle A, x\rangle \xrightarrow{\langle a, i\rangle}\langle B, y\rangle \xrightarrow{\langle b, j\rangle}\langle C, z\rangle
$$

- The first projection $\pi: \int T \rightarrow \mathcal{Q}$ is a split fibration.
- $\int T$ is a quantaloid.

The category of all modules

- For every quantaloid \mathcal{Q}, the category \mathcal{Q} - Mod is also a quantaloid.

The category of all modules

- For every quantaloid \mathcal{Q}, the category \mathcal{Q}-Mod is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \rightarrow \mathcal{Q}^{\prime}$, restriction of scalars transforms \mathcal{Q}^{\prime}-modules into \mathcal{Q}-modules:

The category of all modules

- For every quantaloid \mathcal{Q}, the category \mathcal{Q}-Mod is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \rightarrow \mathcal{Q}^{\prime}$, restriction of scalars transforms \mathcal{Q}^{\prime}-modules into \mathcal{Q}-modules:

The category of all modules

- For every quantaloid \mathcal{Q}, the category \mathcal{Q}-Mod is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \rightarrow \mathcal{Q}^{\prime}$, restriction of scalars transforms \mathcal{Q}^{\prime}-modules into \mathcal{Q}-modules:

- Thus, $\int \operatorname{Mod}$ is a quantaloid and $\mathfrak{q}: \int \operatorname{Mod} \rightarrow \mathcal{S} \ell-\mathcal{C}$ at is a split fibration.

The category of all modules

- For every quantaloid \mathcal{Q}, the category \mathcal{Q} - Mod is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \rightarrow \mathcal{Q}^{\prime}$, restriction of scalars transforms \mathcal{Q}^{\prime}-modules into \mathcal{Q}-modules:

- Thus, $\int \operatorname{Mod}$ is a quantaloid and $\mathfrak{q}: \int \operatorname{Mod} \rightarrow \mathcal{S} \ell-\mathcal{C}$ at is a split fibration.

Thank you for your attention!

