The Isomorphism Theorem of Algebraic Logic: a Categorical Perspective

José Gil-Férez

Chapman University

Grothendieck, a Multifarious Giant

Chapman University, Orange (CA)

May 24-28, 2022

Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

 $\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi.$

Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi.$$

► ⊢_{CL} is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)

Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi.$$

- $\blacktriangleright \vdash_{\rm CL}$ is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)
- $\models_2 \text{ is the consequence relation determined by "for every valuation in 2,} \\ \text{if } \Sigma \text{ is true, then } \varphi \text{ is also true."}$

Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi.$$

- $\blacktriangleright \vdash_{\rm CL}$ is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)
- ► \models_2 is the consequence relation determined by "for every valuation in 2, if Σ is true, then φ is also true."
- Reformulation in terms of equations: "for every valuation in 2,

if $\{\psi \approx 1 : \psi \in \Sigma\}$ is satisfied, then $\varphi \approx 1$ is also satisfied."

Completeness Theorem for CL:

Syntactic consequence and semantic consequence coincide:

$$\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \Sigma \models_{\mathbf{2}} \varphi.$$

- $\blacktriangleright \vdash_{\rm CL}$ is a consequence relation associated to a deductive system (axioms, rules, proofs, etc.)
- ► \models_2 is the consequence relation determined by "for every valuation in 2, if Σ is true, then φ is also true."
- ▶ Reformulation in terms of equations: "for every valuation in 2,

if $\{\psi \approx 1 : \psi \in \Sigma\}$ is satisfied, then $\varphi \approx 1$ is also satisfied."

Accordingly, we could rewrite the Completeness Theorem:

$$\Sigma \vdash_{\mathrm{CL}} \varphi \quad \Leftrightarrow \quad \{\psi \approx 1 : \psi \in \Sigma\} \models_{\mathbf{2}} \varphi \approx 1.$$

Abstract deductive relations

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$ such that, for every $X \subseteq S$ and $\varphi \in S$,

1. $X \vdash \varphi$, if $\varphi \in X$,

Abstract deductive relations

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$ such that, for every $X \subseteq S$ and $\varphi \in S$,

1.
$$X \vdash \varphi$$
, if $\varphi \in X$,

2. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

Abstract deductive relations

An abstract deductive relation (ADR) on a set *S* is a relation $\vdash \subseteq \mathcal{P}(S) \times S$ such that, for every $X \subseteq S$ and $\varphi \in S$,

1.
$$X \vdash \varphi$$
, if $\varphi \in X$,

- **2**. If $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,
- **3**. if $X \subseteq Y$ and $X \vdash \varphi$, then $Y \vdash \varphi$. (It follows from 1 and 2.)

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

- 1. $X \vdash \varphi$, if $\varphi \in X$,
- **2.** if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

- 1. $X \vdash \varphi$, if $\varphi \in X$,
- **2**. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set *S* is a map $\gamma : \mathcal{P}S \to \mathcal{P}S$:

1.
$$X \subseteq \gamma(X)$$
,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X)) = \gamma(X)$.

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

- 1. $X \vdash \varphi$, if $\varphi \in X$,
- **2**. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set *S* is a map $\gamma : \mathcal{P}S \to \mathcal{P}S$:

1.
$$X \subseteq \gamma(X)$$
,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X)) = \gamma(X)$.

A closure system on a set *S* is a set $C \subseteq \mathcal{P}S$ such that

1.
$$S \in C$$
,

2. C closed under arbitrary intersections.

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

- 1. $X \vdash \varphi$, if $\varphi \in X$,
- **2**. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set *S* is a map $\gamma : \mathcal{P}S \to \mathcal{P}S$:

1.
$$X \subseteq \gamma(X)$$
,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X)) = \gamma(X)$.

A closure system on a set S is a set $C \subseteq \mathcal{P}S$ such that

1.
$$S \in C$$
,

2. C closed under arbitrary intersections.

Theorem

These three concepts encode the same information. In particular, the closure system associated to an ADR \vdash is the set of its theories, $Th(\vdash)$.

An abstract deductive relation (ADR) on a set S is a relation $\vdash \subseteq \mathcal{P}(S) \times S$:

- 1. $X \vdash \varphi$, if $\varphi \in X$,
- **2**. if $X \vdash \psi$ for every $\psi \in Y$ and $Y \vdash \varphi$, then $X \vdash \varphi$,

A closure operator on a set *S* is a map $\gamma : \mathcal{P}S \to \mathcal{P}S$:

1.
$$X \subseteq \gamma(X)$$
,
2. if $X \subseteq Y$ then $\gamma(X) \subseteq \gamma(Y)$,
3. $\gamma(\gamma(X)) = \gamma(X)$.

A closure system on a set S is a set $C \subseteq \mathcal{P}S$ such that

1.
$$S \in C$$
,

2. C closed under arbitrary intersections.

Theorem

These three concepts encode the same information. In particular, the closure system associated to an ADR \vdash is the set of its theories, $Th(\vdash)$.

A theory of a logic \vdash on *S* is a subset *X* so that if $X \vdash \varphi$ then $\varphi \in X$. $\mathbf{Th}(\vdash) = \langle \mathrm{Th}(\vdash), \subseteq \rangle$ is a complete lattice.

José Gil-Férez (Chapman University)

A sentential logic is a pair $S = \langle Fm_L, \vdash_S \rangle$, where \vdash_S is an ADR on Fm_L satisfying

A sentential logic is a pair $S = \langle Fm_L, \vdash_S \rangle$, where \vdash_S is an ADR on Fm_L satisfying

substitution-invariance: for all Σ , φ , and σ : $\mathbf{Fm}_{\mathcal{L}} \to \mathbf{Fm}_{\mathcal{L}}$,

 $\Sigma \vdash_{\mathcal{S}} \varphi \quad \Rightarrow \quad \sigma[\Sigma] \vdash_{\mathcal{S}} \sigma(\varphi).$

A sentential logic is a pair $S = \langle \operatorname{Fm}_{\mathcal{L}}, \vdash_{\mathcal{S}} \rangle$, where $\vdash_{\mathcal{S}}$ is an ADR on $\operatorname{Fm}_{\mathcal{L}}$ satisfying

substitution-invariance: for all Σ , φ , and σ : $\mathbf{Fm}_{\mathcal{L}} \to \mathbf{Fm}_{\mathcal{L}}$,

$$\Sigma \vdash_{\mathcal{S}} \varphi \quad \Rightarrow \quad \sigma[\Sigma] \vdash_{\mathcal{S}} \sigma(\varphi).$$

Sentential logics can be defined in multiple ways:

- ▶ via a deductive system (natural, Hilbert system, Gentsen system, ...)
- via a semantics (algebraic, tableaux, model, ...)
- > via an abstract description (the smallest one satisfying this and this, ...)

▶ ...

Example 2: Equational logics

Let K be a class of algebras, Π a set of equations, and $\varepsilon_1 \approx \varepsilon_2$ an equation.

 $\Pi \models_\mathsf{K} \varepsilon_1 \approx \varepsilon_2$

means that for every algebra $A \in K$ and every valuation $v \colon Fm \to A$,

if v satisfies all the equations of Π , then v also satisfies $\varepsilon_1 \approx \varepsilon_2$.

- \models_{K} is the equational logic associated to K.
- ► \models_{K} is an ADR on the set of equations $\mathrm{Eq}_{\mathcal{L}}$.
- ► ⊨_K also satisfies

substitution-invariance: for all Π , $\varepsilon_1 \approx \varepsilon_2$, and σ : $\mathbf{Fm}_{\mathcal{L}} \rightarrow \mathbf{Fm}_{\mathcal{L}}$,

$$\Pi \models_{\mathsf{K}} \varepsilon_1 \approx \varepsilon_2 \quad \Rightarrow \quad \sigma[\Pi] \models_{\mathsf{K}} \sigma(\varepsilon_1) \approx \sigma(\varepsilon_2).$$

Algebraic semantics

Given a set of equations Ξ in one variable x, we define the translation $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$ as follows:

$$\tau\{\psi\} = \Xi(\psi/x)$$
 and $\tau\Sigma = \bigcup_{\psi\in\Sigma} \tau\{\psi\}.$

Algebraic semantics

Given a set of equations Ξ in one variable x, we define the translation $\tau: \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$ as follows:

$$\tau\{\psi\} = \Xi(\psi/x)$$
 and $\tau\Sigma = \bigcup_{\psi\in\Sigma} \tau\{\psi\}.$

Definition

A class of algebras K is an algebraic semantics for a sentential logic S if there exists a set of equations Ξ in one variable x such that for every set of formulas Σ and every formula φ ,

$$\Sigma \vdash_{\mathcal{S}} \varphi \quad \Leftrightarrow \quad \tau \Sigma \vDash_{\mathsf{K}} \tau \{\varphi\}.$$

 Ξ is called a set of defining equations.

► The class {2} is an algebraic semantics for CL. Defining set of equations: {x ≈ 1}.

- ► The class {2} is an algebraic semantics for CL. Defining set of equations: {x ≈ 1}.
- The class BA of Boolean algebras is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.

- ► The class {2} is an algebraic semantics for CL. Defining set of equations: {x ≈ 1}.
- The class BA of Boolean algebras is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.
- ► The class HA of Heyting algebras is an algebraic semantics for IL. Defining set of equations: {x ≈ 1}.

- ► The class {2} is an algebraic semantics for CL. Defining set of equations: {x ≈ 1}.
- The class BA of Boolean algebras is an algebraic semantics for CL. Defining set of equations: $\{x \approx 1\}$.
- The class HA of Heyting algebras is an algebraic semantics for IL. Defining set of equations: $\{x \approx 1\}$.
- ► The class HA is an algebraic semantics for CL. Defining set of equations: {¬¬x ≈ 1}.

A sentential logic S is algebraizable if there are

a class of algebras K,

A sentential logic S is algebraizable if there are

- a class of algebras K,
- a set of equations Ξ in one variable x, inducing $\tau \colon \mathcal{P}(Fm) \to \mathcal{P}(Eq)$

A sentential logic S is algebraizable if there are

- a class of algebras K,
- a set of equations Ξ in one variable x, inducing $\tau : \mathcal{P}(Fm) \to \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

A sentential logic S is algebraizable if there are

- a class of algebras K,
- a set of equations Ξ in one variable x, inducing $\tau : \mathcal{P}(Fm) \to \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

A sentential logic S is algebraizable if there are

- a class of algebras K,
- ▶ a set of equations Ξ in one variable *x*, inducing $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

so that for any set of formulas $\Sigma \cup \{\varphi\}$ and set of equations $\Pi \cup \{\varepsilon_1 \approx \varepsilon_2\}$

1. $\Sigma \vdash_{\mathcal{S}} \varphi \quad \Leftrightarrow \quad \tau \Sigma \vDash_{\mathsf{K}} \tau \{\varphi\},$

A sentential logic S is algebraizable if there are

- a class of algebras K,
- ▶ a set of equations Ξ in one variable *x*, inducing $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

1.
$$\Sigma \vdash_{\mathcal{S}} \varphi \iff \tau \Sigma \vDash_{\mathsf{K}} \tau\{\varphi\},$$

2. $\varepsilon_1 \approx \varepsilon_2 \rightrightarrows \vDash_{\mathsf{K}} \tau \rho(\varepsilon_1 \approx \varepsilon_2),$

A sentential logic S is algebraizable if there are

- a class of algebras K,
- ▶ a set of equations Ξ in one variable *x*, inducing $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

- 1. $\Sigma \vdash_{\mathcal{S}} \varphi \quad \Leftrightarrow \quad \tau \Sigma \models_{\mathsf{K}} \tau \{\varphi\},$
- **2.** $\varepsilon_1 \approx \varepsilon_2 \rightrightarrows \models_{\mathsf{K}} \tau \rho(\varepsilon_1 \approx \varepsilon_2),$
- 3. $\Pi \models_{\mathsf{K}} \varepsilon_1 \approx \varepsilon_2 \quad \Leftrightarrow \quad \rho \Pi \vdash_{\mathcal{S}} \rho(\varepsilon_1 \approx \varepsilon_2),$

A sentential logic S is algebraizable if there are

- a class of algebras K,
- ▶ a set of equations Ξ in one variable x, inducing $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

1.
$$\Sigma \vdash_{\mathcal{S}} \varphi \iff \tau \Sigma \vDash_{\mathsf{K}} \tau \{\varphi\},$$

2. $\varepsilon_1 \approx \varepsilon_2 \rightrightarrows \vDash_{\mathsf{K}} \tau \rho(\varepsilon_1 \approx \varepsilon_2),$
3. $\Pi \vDash_{\mathsf{K}} \varepsilon_1 \approx \varepsilon_2 \iff \rho \Pi \vdash_{\mathcal{S}} \rho(\varepsilon_1 \approx \varepsilon_2),$
4. $\varphi \dashv \vdash_{\mathcal{S}} \rho \tau(\varphi).$

A sentential logic S is algebraizable if there are

- a class of algebras K,
- ▶ a set of equations Ξ in one variable x, inducing $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

1.
$$\Sigma \vdash_{\mathcal{S}} \varphi \iff \tau \Sigma \vDash_{\mathsf{K}} \tau \{\varphi\},$$

2. $\varepsilon_1 \approx \varepsilon_2 \rightrightarrows \vDash_{\mathsf{K}} \tau \rho(\varepsilon_1 \approx \varepsilon_2),$
3. $\Pi \vDash_{\mathsf{K}} \varepsilon_1 \approx \varepsilon_2 \iff \rho \Pi \vdash_{\mathcal{S}} \rho(\varepsilon_1 \approx \varepsilon_2),$
4. $\varphi \dashv \vdash_{\mathcal{S}} \rho \tau(\varphi).$

A sentential logic S is algebraizable if there are

- a class of algebras K,
- ▶ a set of equations Ξ in one variable *x*, inducing $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

so that for any set of formulas $\Sigma \cup \{\varphi\}$ and set of equations $\Pi \cup \{\varepsilon_1 \approx \varepsilon_2\}$

1.
$$\Sigma \vdash_{\mathcal{S}} \varphi \iff \tau \Sigma \vDash_{\mathsf{K}} \tau \{\varphi\},$$

2. $\varepsilon_1 \approx \varepsilon_2 \rightrightarrows \vDash_{\mathsf{K}} \tau \rho(\varepsilon_1 \approx \varepsilon_2),$
3. $\Pi \vDash_{\mathsf{K}} \varepsilon_1 \approx \varepsilon_2 \iff \rho \Pi \vdash_{\mathcal{S}} \rho(\varepsilon_1 \approx \varepsilon_2),$
4. $\varphi \dashv \vdash_{\mathcal{S}} \rho \tau(\varphi).$

The class K is call an equivalent algebraic semantics of S.

A sentential logic S is algebraizable if there are

- a class of algebras K,
- ▶ a set of equations Ξ in one variable x, inducing $\tau : \mathcal{P}(Fm) \rightarrow \mathcal{P}(Eq)$
- a set of formulas Γ in two variables x, y, inducing $\rho \colon \mathcal{P}(Eq) \to \mathcal{P}(Fm)$,

so that for any set of formulas $\Sigma \cup \{\varphi\}$ and set of equations $\Pi \cup \{\varepsilon_1 \approx \varepsilon_2\}$

1.
$$\Sigma \vdash_{\mathcal{S}} \varphi \iff \tau \Sigma \vDash_{\mathsf{K}} \tau \{\varphi\},$$

2. $\varepsilon_1 \approx \varepsilon_2 \rightrightarrows \vDash_{\mathsf{K}} \tau \rho(\varepsilon_1 \approx \varepsilon_2),$
3. $\Pi \vDash_{\mathsf{K}} \varepsilon_1 \approx \varepsilon_2 \iff \rho \Pi \vdash_{\mathcal{S}} \rho(\varepsilon_1 \approx \varepsilon_2),$
4. $\varphi \dashv \vdash_{\mathcal{S}} \rho \tau(\varphi).$

The class K is call an equivalent algebraic semantics of S.

Conditions 3 and 4 follow from 1 and 2.

► The class {2} is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: {x ≈ 1} and {x' ∨ y, y' ∨ x}.

- ► The class {2} is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: {x ≈ 1} and {x' ∨ y, y' ∨ x}.
- The class BA is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\{x' \lor y, y' \lor x\}$.

- ► The class {2} is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: {x ≈ 1} and {x' ∨ y, y' ∨ x}.
- The class BA is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\{x' \lor y, y' \lor x\}$.
- The class HA is an equivalent algebraic semantics for IL. Defining sets of equations and formulas: {x ≈ 1} and {x → y, y → x}.

- The class $\{2\}$ is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: $\{x \approx 1\}$ and $\{x' \lor y, y' \lor x\}$.
- ► The class BA is an equivalent algebraic semantics for CL. Defining sets of equations and formulas: {x ≈ 1} and {x' ∨ y, y' ∨ x}.
- The class HA is an equivalent algebraic semantics for IL. Defining sets of equations and formulas: {x ≈ 1} and {x → y, y → x}.
- The class HA is not an equivalent algebraic semantics for CL.

 $Fm, Eq, Seq, \ldots \dashrightarrow S$ an arbitrary set

 $Fm, Eq, Seq, \ldots \dashrightarrow S$ an arbitrary set

 $\vdash_{\mathcal{S}}, \vDash_{\mathsf{K}}, \vdash_{\mathcal{G}}, \ldots \dashrightarrow \rightarrow \vdash$ an abstract deductive relation on S

 $\operatorname{Fm}, \operatorname{Eq}, \operatorname{Seq}, \ldots \dashrightarrow S$ an arbitrary set

 $\vdash_{\mathcal{S}}, \models_{\mathsf{K}}, \vdash_{\mathcal{G}}, \ldots \dashrightarrow \vdash$ an abstract deductive relation on S

 $\operatorname{End}(\mathbf{Fm}_{\mathcal{L}}) \xrightarrow{} M$ an arbitrary monoid

 $Fm, Eq, Seq, \ldots \dashrightarrow S$ an arbitrary set

 $\vdash_{\mathcal{S}}, \vDash_{\mathsf{K}}, \vdash_{\mathcal{G}}, \dots \dashrightarrow \rightarrow \vdash$ an abstract deductive relation on S

 $\operatorname{End}(\mathbf{Fm}_{\mathcal{L}}) \dashrightarrow M$ an arbitrary monoid

An action of a monoid M on a set S is a map $\cdot : M \times S \to S$ such that

(M1)
$$1 \cdot \varphi = \varphi$$
.

• (M2)
$$\sigma \cdot (\sigma' \cdot \varphi) = (\sigma \sigma') \cdot \varphi$$
.

The elements of the monoid are called substitutions.

 $Fm, Eq, Seq, \ldots \dashrightarrow S$ an arbitrary set

 $\vdash_{\mathcal{S}}, \vDash_{\mathsf{K}}, \vdash_{\mathcal{G}}, \dots \dashrightarrow \rightarrow \vdash$ an abstract deductive relation on S

 $\operatorname{End}(\mathbf{Fm}_{\mathcal{L}}) \dashrightarrow M$ an arbitrary monoid

An action of a monoid M on a set S is a map $\cdot : M \times S \to S$ such that

(M1)
$$1 \cdot \varphi = \varphi$$
.

• (M2)
$$\sigma \cdot (\sigma' \cdot \varphi) = (\sigma \sigma') \cdot \varphi$$
.

The elements of the monoid are called substitutions.

An ADR \vdash on S is substitution-invariant if

$$X \vdash \varphi \quad \Rightarrow \quad \sigma \cdot X \vdash \sigma \cdot \varphi.$$

Translation equivalence

Translation equivalence

Two ADR's \vdash on S and \vdash' on S' are translation equivalent if there exist maps $\tau: \mathcal{P}S \to \mathcal{P}S'$ and $\rho: \mathcal{P}S' \to \mathcal{P}S$ such that:

• τ and ρ are determined by the images of the singletons,

Translation equivalence

Two ADR's \vdash on S and \vdash' on S' are translation equivalent if there exist maps $\tau: \mathcal{P}S \to \mathcal{P}S'$ and $\rho: \mathcal{P}S' \to \mathcal{P}S$ such that:

• τ and ρ are determined by the images of the singletons,

•
$$X \vdash \varphi \quad \Leftrightarrow \quad \tau X \vdash' \tau \{\varphi\},$$

Translation equivalence

Two ADR's \vdash on S and \vdash' on S' are translation equivalent if there exist maps $\tau: \mathcal{P}S \to \mathcal{P}S'$ and $\rho: \mathcal{P}S' \to \mathcal{P}S$ such that:

• τ and ρ are determined by the images of the singletons,

$$\bullet \ X \vdash \varphi \quad \Leftrightarrow \quad \tau X \vdash' \tau \{\varphi\},$$

$$\bullet \ X' \vdash' \varphi' \quad \Leftrightarrow \quad \rho X' \vdash \rho \{\varphi'\},$$

Translation equivalence

- τ and ρ are determined by the images of the singletons,
- $\bullet \ X \vdash \varphi \quad \Leftrightarrow \quad \tau X \vdash' \tau \{\varphi\},$
- $\label{eq:constraint} \blacktriangleright X' \vdash' \varphi' \quad \Leftrightarrow \quad \rho X' \vdash \rho \{\varphi'\},$
- $X \dashv \vdash \rho \tau X$,

Translation equivalence

- τ and ρ are determined by the images of the singletons,
- $\bullet \ X \vdash \varphi \quad \Leftrightarrow \quad \tau X \vdash' \tau \{\varphi\},$
- $\blacktriangleright X' \vdash' \varphi' \quad \Leftrightarrow \quad \rho X' \vdash \rho \{\varphi'\},$
- $X \dashv \vdash \rho \tau X$,
- $X' \dashv \vdash' \tau \rho X'$.

Translation equivalence

- τ and ρ are determined by the images of the singletons,
- $\bullet \ X \vdash \varphi \quad \Leftrightarrow \quad \tau X \vdash' \tau \{\varphi\},$
- $\blacktriangleright X' \vdash' \varphi' \quad \Leftrightarrow \quad \rho X' \vdash \rho \{\varphi'\},$
- $X \dashv \vdash \rho \tau X$,
- $X' \dashv \vdash' \tau \rho X'$.

Translation equivalence

Two ADR's \vdash on S and \vdash' on S' are translation equivalent if there exist maps $\tau: \mathcal{P}S \to \mathcal{P}S'$ and $\rho: \mathcal{P}S' \to \mathcal{P}S$ such that:

- τ and ρ are determined by the images of the singletons,
- $\bullet \ X \vdash \varphi \quad \Leftrightarrow \quad \tau X \vdash' \tau \{\varphi\},$
- $\blacktriangleright X' \vdash' \varphi' \quad \Leftrightarrow \quad \rho X' \vdash \rho \{\varphi'\},$
- $X \dashv \vdash \rho \tau X$,
- $X' \dashv \vdash' \tau \rho X'$.

Lattice equivalence

Suppose \vdash on *S* and \vdash' on *S'*. They are lattice equivalent if their lattices of theories are isomorphic:

 $\mathbf{Th}(\vdash) \cong \mathbf{Th}(\vdash').$

Question: Are these two equivalences the same?

Question: Are these two equivalences the same?

Answer: Yes!

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Theorem (Blok & Pigozzi)

A propositional logic S is algebraizable with equivalent algebraic semantics K if and only if there exists an isomorphism between the lattices of theories of \vdash_S and \models_K commuting with substitutions.

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Theorem (Blok & Pigozzi)

A propositional logic S is algebraizable with equivalent algebraic semantics K if and only if there exists an isomorphism between the lattices of theories of \vdash_S and \models_K commuting with substitutions.

Question: Are these two equivalences the same?

Answer: Yes!

Question: What about if we also consider substitution-invariance?

Theorem (Blok & Pigozzi)

A propositional logic S is algebraizable with equivalent algebraic semantics K if and only if there exists an isomorphism between the lattices of theories of \vdash_S and \models_K commuting with substitutions.

Structurality

Let *M* be a monoid and \vdash and \vdash' substitution-invariant ADR's on *M*-sets *S* and *S'*. A structural translation from *S* to *S'* is a map $\tau: \mathcal{P}S \to \mathcal{P}S'$ so that:

- τ is determined by the images of the singletons: $\tau \Sigma = \bigcup_{\psi \in \Sigma} \tau \{\psi\},\$
- τ commutes with substitutions: $\tau \{ \sigma \cdot \varphi \} = \sigma \cdot \tau \{ \varphi \}.$

$$M = \langle M, \star, 1 \rangle \text{ monoid } \longrightarrow \mathcal{A}_M = \langle \mathcal{P}M, \circ, \{1\} \rangle$$
$$a \circ b = \{\sigma \star \tau : \sigma \in a, \ \tau \in b\}$$
$$\cdot : M \times S \to S \text{ action } \longrightarrow \ast : \mathcal{P}M \times \mathcal{P}S \to \mathcal{P}S$$
$$a \ast x = \{\sigma \cdot \varphi : \sigma \in a, \ \varphi \in x\}$$

 $M = \langle M, \star, 1 \rangle \text{ monoid } \longrightarrow \mathcal{A}_M = \langle \mathcal{P}M, \circ, \{1\} \rangle \text{ complete residuated lattice}$ $a \circ b = \{\sigma \star \tau : \sigma \in a, \ \tau \in b\}$ $\cdot : M \times S \to S \text{ action } \longrightarrow \ast : \mathcal{P}M \times \mathcal{P}S \to \mathcal{P}S$ $a \ast x = \{\sigma \cdot \varphi : \sigma \in a, \ \varphi \in x\}$

 $M = \langle M, \star, 1 \rangle$ monoid $\longrightarrow A_M = \langle \mathcal{P}M, \circ, \{1\} \rangle$ complete residuated lattice $a \circ b = \{\sigma \star \tau : \sigma \in a, \tau \in b\}$ $\cdot : M \times S \to S$ action $\longrightarrow \ast : \mathcal{P}M \times \mathcal{P}S \to \mathcal{P}S$ biresiduated map

$$a * x = \{ \sigma \cdot \varphi : \sigma \in a, \ \varphi \in x \}$$

 $M = \langle M, \star, 1 \rangle \text{ monoid } \dashrightarrow \mathcal{A}_M = \langle \mathcal{P}M, \circ, \{1\} \rangle \text{ complete residuated lattice}$ $a \circ b = \{ \sigma \star \tau : \sigma \in a, \ \tau \in b \}$

 $: M \times S \to S$ action $\dashrightarrow : \mathcal{P}M \times \mathcal{P}S \to \mathcal{P}S$ biresiduated map

$$a * x = \{ \sigma \cdot \varphi : \sigma \in a, \ \varphi \in x \}$$

Module over a quantale

Fix a quantale $\mathcal{A} = \langle \mathbf{A}, \circ, 1 \rangle$, which is a tuple where \mathbf{A} is a complete lattice and $\circ : \mathbf{A} \times \mathbf{A} \to \mathbf{A}$ is a biresiduated map rendering $\langle A, \circ, 1 \rangle$ a monoid.

 $M = \langle M, \star, 1 \rangle$ monoid $\longrightarrow \mathcal{A}_M = \langle \mathcal{P}M, \circ, \{1\} \rangle$ complete residuated lattice $a \circ b = \{\sigma \star \tau : \sigma \in a, \ \tau \in b\}$

 $: M \times S \to S$ action $\dashrightarrow : \mathcal{P}M \times \mathcal{P}S \to \mathcal{P}S$ biresiduated map

$$a * x = \{ \sigma \cdot \varphi : \sigma \in a, \ \varphi \in x \}$$

Module over a quantale

Fix a quantale $\mathcal{A} = \langle \mathbf{A}, \circ, 1 \rangle$, which is a tuple where \mathbf{A} is a complete lattice and $\circ : \mathbf{A} \times \mathbf{A} \to \mathbf{A}$ is a biresiduated map rendering $\langle A, \circ, 1 \rangle$ a monoid.

Def: An \mathcal{A} -module is a pair $\mathbb{R} = \langle \mathbf{R}, * \rangle$, where \mathbf{R} is a complete lattice and $* : \mathbf{A} \times \mathbf{R} \to \mathbf{R}$ is a biresiduated map satisfying:

 $M = \langle M, \star, 1 \rangle \text{ monoid } \dashrightarrow \mathcal{A}_M = \langle \mathcal{P}M, \circ, \{1\} \rangle \text{ complete residuated lattice}$ $a \circ b = \{ \sigma \star \tau : \sigma \in a, \ \tau \in b \}$

 $: M \times S \to S$ action $\dashrightarrow : \mathcal{P}M \times \mathcal{P}S \to \mathcal{P}S$ biresiduated map

$$a * x = \{ \sigma \cdot \varphi : \sigma \in a, \ \varphi \in x \}$$

Module over a quantale

Fix a quantale $\mathcal{A} = \langle \mathbf{A}, \circ, 1 \rangle$, which is a tuple where \mathbf{A} is a complete lattice and $\circ : \mathbf{A} \times \mathbf{A} \to \mathbf{A}$ is a biresiduated map rendering $\langle A, \circ, 1 \rangle$ a monoid.

Def: An \mathcal{A} -module is a pair $\mathbb{R} = \langle \mathbf{R}, * \rangle$, where \mathbf{R} is a complete lattice and $* : \mathbf{A} \times \mathbf{R} \to \mathbf{R}$ is a biresiduated map satisfying:

(i)
$$1 * x = x$$
,

(ii)
$$a * (b * x) = (a \circ b) * x$$
.

Closure operators on \mathcal{A} -modules

A closure operator on an \mathcal{A} -module \mathbb{R} is a map $\gamma \colon R \to R$ such that

1.
$$x \leq \gamma x$$
,
2. $x \leq y \Rightarrow \gamma x \leq \gamma y$,

3. $\gamma \gamma x = \gamma x$,

Closure operators on A-modules

A closure operator on an \mathcal{A} -module \mathbb{R} is a map $\gamma \colon R \to R$ such that

- 1. $x \leq \gamma x$,
- **2.** $x \leqslant y \quad \Rightarrow \quad \gamma x \leqslant \gamma y,$
- **3**. $\gamma\gamma x = \gamma x$,
- 4. for all $a \in A$, and $x \in \mathbb{R}$, $a * \gamma x \leq \gamma (a * x)$.

Closure operators on \mathcal{A} -modules

A closure operator on an \mathcal{A} -module \mathbb{R} is a map $\gamma \colon R \to R$ such that

1.
$$x \leq \gamma x$$
,
2. $x \leq y \Rightarrow \gamma x \leq \gamma y$,
3. $\gamma \gamma x = \gamma x$,
4. for all $a \in A$, and $x \in \mathbb{R}$, $a * \gamma x \leq \gamma (a * x)$.
(i.e., $x \vdash_{\gamma} y$ implies $a * x \vdash_{\gamma} a * y$.)

Closure operators on *A*-modules

A closure operator on an \mathcal{A} -module \mathbb{R} is a map $\gamma \colon R \to R$ such that

1.
$$x \leq \gamma x$$
,
2. $x \leq y \Rightarrow \gamma x \leq \gamma y$,
3. $\gamma \gamma x = \gamma x$,
4. for all $a \in \mathcal{A}$, and $x \in \mathbb{R}$, $a * \gamma x \leq \gamma (a * x)$.
(i.e., $x \vdash_{\gamma} y$ implies $a * x \vdash_{\gamma} a * y$.)

The \mathcal{A} -module of theories of γ is $\mathbb{R}_{\gamma} = \langle \mathbf{R}_{\gamma}, *_{\gamma} \rangle$, where

 $\bullet \ R_{\gamma} = \{ x \in R : \gamma x = x \}.$

Closure operators on *A*-modules

A closure operator on an \mathcal{A} -module \mathbb{R} is a map $\gamma \colon R \to R$ such that

1.
$$x \leq \gamma x$$
,
2. $x \leq y \Rightarrow \gamma x \leq \gamma y$,
3. $\gamma \gamma x = \gamma x$,
4. for all $a \in \mathcal{A}$, and $x \in \mathbb{R}$, $a * \gamma x \leq \gamma (a * x)$.
(i.e., $x \vdash_{\gamma} y$ implies $a * x \vdash_{\gamma} a * y$.)

The \mathcal{A} -module of theories of γ is $\mathbb{R}_{\gamma} = \langle \mathbf{R}_{\gamma}, *_{\gamma} \rangle$, where

- $\blacktriangleright R_{\gamma} = \{ x \in R : \gamma x = x \}.$
- $\blacktriangleright a *_{\gamma} x = \gamma(a * x).$

\mathcal{A} -Morphisms

An \mathcal{A} -morphism $\tau : \mathbb{R} \to \mathbb{S}$ is a residuated map $\tau : \mathbb{R} \to \mathbb{S}$ such that

$$\tau(a * x) = a * \tau x.$$

\mathcal{A} -Morphisms

An \mathcal{A} -morphism $\tau : \mathbb{R} \to \mathbb{S}$ is a residuated map $\tau : \mathbb{R} \to \mathbb{S}$ such that

$$\tau(a * x) = a * \tau x.$$

Canonical projection of a closure operator

If γ is a closure operator on \mathbb{R} , define $\dot{\gamma} : R \twoheadrightarrow R_{\gamma}$ as $\dot{\gamma}x = \gamma x$. Then, $\dot{\gamma}$ is an \mathcal{A} -morphism:

$$\dot{\gamma}: \mathbb{R} \twoheadrightarrow \mathbb{R}_{\gamma}.$$

\mathcal{A} -Morphisms

An \mathcal{A} -morphism $\tau : \mathbb{R} \to \mathbb{S}$ is a residuated map $\tau : \mathbb{R} \to \mathbb{S}$ such that

$$\tau(a * x) = a * \tau x.$$

Canonical projection of a closure operator

If γ is a closure operator on \mathbb{R} , define $\dot{\gamma} : R \twoheadrightarrow R_{\gamma}$ as $\dot{\gamma}x = \gamma x$. Then, $\dot{\gamma}$ is an \mathcal{A} -morphism:

$$\dot{\gamma}: \mathbb{R} \twoheadrightarrow \mathbb{R}_{\gamma}.$$

Slogan: A logic is an epimorphism in a category of modules (over a quantale).

Examples:

If $\mathcal{A}_{\mathcal{L}}$ is the quantale determined by the monoid $\operatorname{End}(\mathbf{Fm}_{\mathcal{L}})$ and \mathbb{R} and \mathbb{S} are the $\mathcal{A}_{\mathcal{L}}$ -modules determined by $\operatorname{Fm}_{\mathcal{L}}$ and $\operatorname{Eq}_{\mathcal{L}}$, then

Examples:

If $\mathcal{A}_{\mathcal{L}}$ is the quantale determined by the monoid $\operatorname{End}(\mathbf{Fm}_{\mathcal{L}})$ and \mathbb{R} and \mathbb{S} are the $\mathcal{A}_{\mathcal{L}}$ -modules determined by $\operatorname{Fm}_{\mathcal{L}}$ and $\operatorname{Eq}_{\mathcal{L}}$, then

every A_L-morphism τ : ℝ → S is determined by a set of equations Ξ in one variable x in the following way: τ{φ} = Ξ(φ/x);

Examples:

If $\mathcal{A}_{\mathcal{L}}$ is the quantale determined by the monoid $\operatorname{End}(\mathbf{Fm}_{\mathcal{L}})$ and \mathbb{R} and \mathbb{S} are the $\mathcal{A}_{\mathcal{L}}$ -modules determined by $\operatorname{Fm}_{\mathcal{L}}$ and $\operatorname{Eq}_{\mathcal{L}}$, then

- every A_L-morphism τ : ℝ → S is determined by a set of equations Ξ in one variable x in the following way: τ{φ} = Ξ(φ/x);
- every $\mathcal{A}_{\mathcal{L}}$ -morphism $\rho : \mathbb{S} \to \mathbb{R}$ is determined by a set of formulas Γ in two variables x, y in the following way: $\rho\{\delta \approx \varepsilon\} = \Gamma(\delta/x, \varepsilon/y)$.

Def: Given \mathcal{A} -modules \mathbb{R} and \mathbb{S} , and closure operators γ and δ on \mathbb{R} and \mathbb{S} : • an interpretation of γ into δ is a morphism $\tau : \mathbb{R} \to \mathbb{S}$, satisfying

$$\forall x, x' \in R, \quad x \leqslant \gamma(x') \Leftrightarrow \tau x \leqslant \delta(\tau x'),$$

Def: Given \mathcal{A} -modules \mathbb{R} and \mathbb{S} , and closure operators γ and δ on \mathbb{R} and \mathbb{S} : • an interpretation of γ into δ is a morphism $\tau : \mathbb{R} \to \mathbb{S}$, satisfying

$$\forall x, x' \in R, \quad x \leqslant \gamma(x') \Leftrightarrow \tau x \leqslant \delta(\tau x'),$$

• a representation of γ into δ is a monomorphism $\tau : \mathbb{R}_{\gamma} \rightarrow \mathbb{S}_{\delta}$.

Def: Given \mathcal{A} -modules \mathbb{R} and \mathbb{S} , and closure operators γ and δ on \mathbb{R} and \mathbb{S} : • an interpretation of γ into δ is a morphism $\tau : \mathbb{R} \to \mathbb{S}$, satisfying

$$\forall x, x' \in R, \quad x \leqslant \gamma(x') \Leftrightarrow \tau x \leqslant \delta(\tau x'),$$

• a representation of γ into δ is a monomorphism $\tau : \mathbb{R}_{\gamma} \rightarrow \mathbb{S}_{\delta}$.

Def: Given \mathcal{A} -modules \mathbb{R} and \mathbb{S} , and closure operators γ and δ on \mathbb{R} and \mathbb{S} : • an interpretation of γ into δ is a morphism $\tau : \mathbb{R} \to \mathbb{S}$, satisfying

$$\forall x, x' \in R, \quad x \leq \gamma(x') \Leftrightarrow \tau x \leq \delta(\tau x'),$$

• a representation of γ into δ is a monomorphism $\tau : \mathbb{R}_{\gamma} \rightarrow \mathbb{S}_{\delta}$.

Remark:

• Interpretable \simeq having an algebraic semantics.

Def: Given \mathcal{A} -modules \mathbb{R} and \mathbb{S} , and closure operators γ and δ on \mathbb{R} and \mathbb{S} :

• an interpretation of γ into δ is a morphism $\tau : \mathbb{R} \to \mathbb{S}$, satisfying

$$\forall x, x' \in R, \quad x \leqslant \gamma(x') \Leftrightarrow \tau x \leqslant \delta(\tau x'),$$

• a representation of γ into δ is a monomorphism $\tau : \mathbb{R}_{\gamma} \rightarrow \mathbb{S}_{\delta}$.

Remark:

- Interpretable \simeq having an algebraic semantics.
- \blacktriangleright Representable \cong there is an embedding of the lattices of theories, commuting with substitutions.

Proposition

Every interpretation induces a unique representation.

Proposition

Every interpretation induces a unique representation.

Theorem

An \mathcal{A} -module \mathbb{P} is projective if and only if every representation of a closure operator on \mathbb{P} into another closure operator is induced by an interpretation.

Proposition

Every interpretation induces a unique representation.

Theorem

An \mathcal{A} -module \mathbb{P} is projective if and only if every representation of a closure operator on \mathbb{P} into another closure operator is induced by an interpretation.

Theorem

The Isom. Theorem hods for an A-module \mathbb{R} if and only if \mathbb{R} is projective.

The idea of a π -institution is that of a logic that varies along time:

$$\mathcal{I} = \langle \mathcal{S}ign, \operatorname{Sen}, \{\gamma_{\Sigma} : \Sigma \in \mathcal{S}ign\} \rangle$$

The idea of a π -institution is that of a logic that varies along time:

$$\mathcal{I} = \langle \mathcal{S}ign, \operatorname{Sen}, \{\gamma_{\Sigma} : \Sigma \in \mathcal{S}ign\} \rangle$$

Sign is a category (the category of signatures and substitutions)

The idea of a π -institution is that of a logic that varies along time:

$$\mathcal{I} = \langle \mathcal{S}ign, \operatorname{Sen}, \{\gamma_{\Sigma} : \Sigma \in \mathcal{S}ign\} \rangle$$

- Sign is a category (the category of signatures and substitutions)
- Sen: $Sign \rightarrow Set$ is a functor (the functor of sentences)

The idea of a π -institution is that of a logic that varies along time:

$$\mathcal{I} = \langle \mathcal{S}ign, \operatorname{Sen}, \{\gamma_{\Sigma} : \Sigma \in \mathcal{S}ign\} \rangle$$

- Sign is a category (the category of signatures and substitutions)
- Sen: $Sign \rightarrow Set$ is a functor (the functor of sentences)
- γ_{Σ} is a closure operator on Sen Σ , for every $\Sigma \in Sign$

The idea of a π -institution is that of a logic that varies along time:

$$\mathcal{I} = \langle \mathcal{S}ign, \operatorname{Sen}, \{\gamma_{\Sigma} : \Sigma \in \mathcal{S}ign\} \rangle$$

- Sign is a category (the category of signatures and substitutions)
- Sen: $Sign \rightarrow Set$ is a functor (the functor of sentences)
- γ_{Σ} is a closure operator on Sen Σ , for every $\Sigma \in Sign$
- for all $\sigma \colon \Sigma \to \Sigma'$ and $X \subseteq \operatorname{Sen} \Sigma$,

$$\operatorname{Sen}(\sigma)[\gamma_{\Sigma}(X)] \subseteq \gamma_{\Sigma'}(\operatorname{Sen}(\sigma)[X]).$$

Abstractions

Abstractions

Def: A *quantaloid* is an enriched category Q over the cat. $S\ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee -complete lattice;
- ▶ composition $Q(B,C) \times Q(A,B) \xrightarrow{\circ} Q(A,C)$ is biresiduated.

Def: A *quantaloid* is an enriched category Q over the cat. $S\ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee -complete lattice;
- composition $\mathcal{Q}(B,C) \times \mathcal{Q}(A,B) \xrightarrow{\circ} \mathcal{Q}(A,C)$ is biresiduated.

Def: A *quantaloid* is an enriched category Q over the cat. $S\ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee -complete lattice;
- composition $\mathcal{Q}(B,C) \times \mathcal{Q}(A,B) \xrightarrow{\circ} \mathcal{Q}(A,C)$ is biresiduated.

Def: A *module over a quantaloid* Q is an enriched functor $T: Q \to S\ell$. (Notation: For every $a: A \to B$ in Q and $x \in TA$, $a *_T x = T(a)x$.)

▶ for every $A \in Q$, TA is a \bigvee -complete lattice;

Def: A *quantaloid* is an enriched category Q over the cat. $S\ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee -complete lattice;
- ▶ composition $Q(B,C) \times Q(A,B) \xrightarrow{\circ} Q(A,C)$ is biresiduated.

- ▶ for every $A \in Q$, TA is a \bigvee -complete lattice;
- ▶ for every $A, B \in Q$, $*_T : Q(A, B) \times TA \rightarrow TB$ is biresiduated;

Def: A *quantaloid* is an enriched category Q over the cat. $S\ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee -complete lattice;
- composition $\mathcal{Q}(B,C) \times \mathcal{Q}(A,B) \xrightarrow{\circ} \mathcal{Q}(A,C)$ is biresiduated.

- ▶ for every $A \in Q$, TA is a \bigvee -complete lattice;
- ▶ for every $A, B \in Q$, $*_T : Q(A, B) \times TA \rightarrow TB$ is biresiduated;
- for every $A \in \mathcal{Q}$, $1_A *_T x = x$;

Def: A *quantaloid* is an enriched category Q over the cat. $S\ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee -complete lattice;
- composition $\mathcal{Q}(B,C) \times \mathcal{Q}(A,B) \xrightarrow{\circ} \mathcal{Q}(A,C)$ is biresiduated.

- ▶ for every $A \in Q$, TA is a \bigvee -complete lattice;
- ▶ for every $A, B \in Q$, $*_T : Q(A, B) \times TA \rightarrow TB$ is biresiduated;
- for every $A \in \mathcal{Q}$, $1_A *_T x = x$;
- for every $a: A \rightarrow B$, $b: B \rightarrow C$ in \mathcal{Q} , and $x \in TA$,

$$(b \circ a) *_T x = b *_T (a *_T x).$$

Def: A *quantaloid* is an enriched category Q over the cat. $S\ell$ of sup-lattices:

- every hom-set $\mathcal{Q}(A, B)$ is a \bigvee -complete lattice;
- composition $\mathcal{Q}(B,C) \times \mathcal{Q}(A,B) \xrightarrow{\circ} \mathcal{Q}(A,C)$ is biresiduated.

Def: A *module over a quantaloid* Q is an enriched functor $T: Q \to S\ell$. (Notation: For every $a: A \to B$ in Q and $x \in TA$, $a *_T x = T(a)x$.)

- ▶ for every $A \in Q$, TA is a \bigvee -complete lattice;
- ▶ for every $A, B \in Q$, $*_T : Q(A, B) \times TA \rightarrow TB$ is biresiduated;

• for every
$$A \in \mathcal{Q}$$
, $1_A *_T x = x$;

• for every $a: A \rightarrow B$, $b: B \rightarrow C$ in \mathcal{Q} , and $x \in TA$,

$$(b \circ a) *_T x = b *_T (a *_T x).$$

Def: A *Q*-morphism between *Q*-modules *T* and *T'* is a natural transformation $\tau: T \rightarrow T'$ so that every component is residuated $\tau_A: TA \rightarrow T'A$.

José Gil-Férez (Chapman University)

The Isomorphism Theorem

Closure operator and its module of theories

Def: A closure operator on a Q-module is a family $\gamma = {\gamma_A : TA \to TA}_{A \in Q}$

- γ_A is a closure operator on the lattice TA;
- ► $\forall a : A \to B \text{ in } Q, \forall x \in TA, \qquad a *_T \gamma_A x \leqslant \gamma_B(a *_T x).$ (Str)

Closure operator and its module of theories

Def: A closure operator on a Q-module is a family $\gamma = {\gamma_A : TA \to TA}_{A \in Q}$

- γ_A is a closure operator on the lattice TA;
- $\bullet \quad \forall a: A \to B \text{ in } \mathcal{Q}, \forall x \in TA, \qquad a *_T \gamma_A x \leqslant \gamma_B(a *_T x).$ (Str)

Given a closure operator γ on a Q-module T, we define $T_{\gamma} \colon Q \to S\ell$

the Q-module of the theories of γ

•
$$T_{\gamma}A = (TA)_{\gamma_A} = \{x \in TA : \gamma_A x = x\};$$

• for all $a: A \to B$ in \mathcal{Q} and $x \in TA$, $a *_{T_{\gamma}} x = \gamma_B(a *_T x)$.

Closure operator and its module of theories

Def: A closure operator on a Q-module is a family $\gamma = {\gamma_A : TA \to TA}_{A \in Q}$

- γ_A is a closure operator on the lattice TA;
- $\bullet \quad \forall a: A \to B \text{ in } \mathcal{Q}, \forall x \in TA, \qquad a *_T \gamma_A x \leqslant \gamma_B(a *_T x).$

Given a closure operator γ on a Q-module T, we define $T_{\gamma} \colon Q \to S\ell$

the Q-module of the theories of γ

•
$$T_{\gamma}A = (TA)_{\gamma_A} = \{x \in TA : \gamma_A x = x\};$$

• for all $a: A \to B$ in \mathcal{Q} and $x \in TA$, $a *_{T_{\gamma}} x = \gamma_B(a *_T x)$.

Every closure operator γ on a Q-module T induces an epi in Q-Mod:

$$\dot{\gamma}: T \twoheadrightarrow T_{\gamma}.$$

(Str)

Grothendieck construction

The Grothendieck construction of a Q-module $T: Q \to S\ell$ is the category $\int T$:

- Objects: $\langle A, x \rangle$ with $A \in \mathcal{Q}$ and $x \in TA$.
- Morphisms: $\langle a, i \rangle : \langle A, x \rangle \rightarrow \langle B, y \rangle, a \colon A \rightarrow B$ is in \mathcal{Q} and $a *_T x \leq y$.
- Composition:

Grothendieck construction

The Grothendieck construction of a Q-module $T: Q \to S\ell$ is the category $\int T$:

- Objects: $\langle A, x \rangle$ with $A \in \mathcal{Q}$ and $x \in TA$.
- Morphisms: $\langle a, i \rangle : \langle A, x \rangle \rightarrow \langle B, y \rangle, a \colon A \rightarrow B$ is in \mathcal{Q} and $a *_T x \leq y$.
- Composition:

• The first projection $\pi: \int T \to Q$ is a split fibration.

Grothendieck construction

The Grothendieck construction of a Q-module $T: Q \to S\ell$ is the category $\int T$:

- Objects: $\langle A, x \rangle$ with $A \in \mathcal{Q}$ and $x \in TA$.
- Morphisms: $\langle a, i \rangle : \langle A, x \rangle \rightarrow \langle B, y \rangle, a \colon A \rightarrow B$ is in \mathcal{Q} and $a *_T x \leq y$.
- Composition:

- The first projection $\pi: \int T \to Q$ is a split fibration.
- $\int T$ is a quantaloid.

▶ For every quantaloid *Q*, the category *Q*-*Mod* is also a quantaloid.

- For every quantaloid Q, the category Q-Mod is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \to \mathcal{Q}'$, restriction of scalars transforms \mathcal{Q}' -modules into \mathcal{Q} -modules:

- ▶ For every quantaloid *Q*, the category *Q*-*Mod* is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \to \mathcal{Q}'$, restriction of scalars transforms \mathcal{Q}' -modules into \mathcal{Q} -modules:

- ▶ For every quantaloid *Q*, the category *Q*-*Mod* is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \to \mathcal{Q}'$, restriction of scalars transforms \mathcal{Q}' -modules into \mathcal{Q} -modules:

• $_$ - $Mod: S\ell$ - $Cat \to S\ell$ -Cat contravariant functor $\begin{array}{c} \mathcal{Q} \longmapsto \mathcal{Q}$ - $Mod \\ F \downarrow & \uparrow_{-} \circ F \\ \mathcal{Q}' \longmapsto \mathcal{Q}$ - $Mod' \end{array}$

▶ Thus, $\int Mod$ is a quantaloid and $q: \int Mod \rightarrow S\ell$ -Cat is a split fibration.

- ▶ For every quantaloid *Q*, the category *Q*-*Mod* is also a quantaloid.
- Given a morphism of quantaloids $F: \mathcal{Q} \rightarrow \mathcal{Q}'$, restriction of scalars transforms \mathcal{Q}' -modules into \mathcal{Q} -modules:

• $_$ - $Mod: S\ell$ - $Cat \to S\ell$ -Cat contravariant functor $\begin{array}{c} \mathcal{Q} \longmapsto \mathcal{Q}$ - $Mod \\ F \downarrow \qquad \uparrow_{-\circ F} \\ \mathcal{Q}' \longmapsto \mathcal{Q}$ - $Mod' \end{array}$

▶ Thus, $\int Mod$ is a quantaloid and $q: \int Mod \rightarrow S\ell$ -Cat is a split fibration.

Thank you for your attention!