

USDA-APHIS Research Updates

Andrea Beam; Md-Sajedul Islam, and Woodward Bailey

United States Department of Agriculture (USDA) - Animal and Plant Health Inspection Service (APHIS) – Plant Protection and Quarantine (PPQ)

Miami, Florida, USA

- 1. Phytosanitary Doses and Packaging
- 2. Low Energy X-Ray Irradiators in Research
- 3. Combination Treatments
- 4. Vectors and Irradiation

APHIS-Approved Irradiation Treatments

https://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/treatment.pdf

Pest	Dose (Gy)
All fruit flies of the family Tephritidae	150
All insects except adults and pupae of the order Lepidoptera	400
Eggs and larvae of the family Tortricidae	290

Pest	Dose (Gy)
Rhagoletis pomonella	60
Anastrepha ludens, Anastrepha obliqua, Anastrepha suspensa	70
Conotrachelus nenuphar	92
Anastrepha serpentina, Bactrocera jarvisi, Bactrocera tryoni, Ceratitis capitata, Copitarsia declora	100
Aspidiotus destructor, Cylas formicarius, Euscepes postfasciatus, Omphisa anastomosalis, Pseudaulacaspis pentagona, Bactrocera cucurbitae, Bactrocera dorsalis	150
Sternochetus frigidus	165
Cydia pomonella, Grapholita molesta, Epiphyas postvittana	200
Cryptophlebia ombrodelta, Cryptophlebia illepida	250
Brevipalpus chilensis, Sternochetus mangiferae	300

Packaging Update

Modified Atmosphere Packaging (MAP) is a process that alters the gas composition surrounding a commodity.

- prolongs the shelf-life of perishable goods
- slows the speed of aerobic microorganisms

APHIS now allows oxygen levels of 10% or higher for irradiation packaging

- 1. Phytosanitary Doses and Packaging
- 2. Low Energy X-Ray Irradiators in Research
- 3. Combination Treatments
- 4. Vectors and Irradiation

Low Energy X-Ray Irradiators in Research

- X-Ray Research Irradiators
 - Low-energy (~160 keV)
 - Fewer security requirements
 - Require special dosimetry methods

Low Energy X-Ray Irradiators

- Cannot use calibration curves interchangeably for gamma and low energy x-ray
- Need special calibration curve for low energy x-ray dosimetry
- NIST (National Institute of Standards and Technology, USA) does not offer low-energy x-ray services

Calibration Process

Calibration Process

- 1. Phytosanitary Doses and Packaging
- 2. Low Energy X-Ray Irradiators in Research
- 3. Combination Treatments
- 4. Vectors and Irradiation

Combination Treatments

- Combine low dose irradiation (30-100 Gy) with short cold treatment (5 days)
- Citrus can be sensitive to irradiation
 - Peel pitting

Figure 1. Control, 150 Gy and 1000 Gy pummelos after 4 weeks of storage; 3 weeks at 12° C and 4th week at 20° C. 1000 Gy pummelos had maximum damage

Previous Research

Host	Pest	Dose (Gy)	Cold Treatment Temp	Cold Treatment Period	Result	Citation
Clementine	Med fruit fly	30	1º C	2 days	No adult emergence	Palou et al. 2007
Papaya	Med fruit fly, Melon fruit fly	30	4 or 11 ⁰ C	11 days	No adult emergence	Follett & Snook 2013
Grapefruit	Carib fruit fly	50	1.1 ⁰ C	5 days	No adult emergence	Von Windeguth & Gould 1990
Navel orange	Med fruit fly	30	5.5° C	14	No adult emergence	Ohta et al. 1989

Medfly requires 100 Gy alone For Medfly in clementine, cold treatment is 14 days (1.11°C) or 18 days (2.22°C)

Methods

- Mandarin oranges ('Cuties') and Valencia oranges (n=96)
- Irradiation doses: 50 Gy and 150 Gy
- Cold treatment: 2° C for 5 days (120 hrs)
- Observe fruit for signs of damage for 2 weeks at room temperature

'Cutie' mandarin

Pre-irradiation Post-treatment (150 Gy)

Dose (Gy)	°Brix post-treatment (mean)	Weight post-treatment (g)	% unsalable
150	13.75	84.33	3.12
50	14.56	82.22	0
0	14.66	79.84	0

Valencia oranges

treatment	°Brix (mean n=10)	Weight final (g)	% unsalable
Pre-treatment	12.89		0
150 Gy	13.20	173.33	3.13
50 Gy	12.56	172.37	6.25
0 Gy (control)	12.90	174.51	15.63

150 Gy + cold

Control (0 Gy)

Conclusions and Next Steps

Conclusions

- Imperfections before treatment became worse post-treatment
- Irradiation plus cold treatment did not substantially affect fruit salability

Next Steps

- Evaluate quality effects and insect efficacy together on larger scale
- Cooperative agreement with University/Collaborators in USA and Mexico
- Consider effects of irradiation first vs. cold treatment first

- 1. Phytosanitary Doses and Packaging
- 2. Low Energy X-Ray Irradiators in Research
- 3. Combination Treatments
- 4. Vectors and Irradiation

Effects of Irradiation on Potato/Tomato Psyllid

and Disease Transmission

- Potato psyllid vectors 'Zebra Chip' disease
 - Similar to bacteria that causes citrus greening
- Cooperative agreement with Texas A&M University, USA
 - Dr. Keyan Zhu-Salzman

Zebra chip disease Photo: USDA ARS

Effects of Irradiation on Potato/Tomato Psyllid and Disease Transmission

Objectives

- 1. Evaluate the effects of irradiation on psyllids.
- 2. Determine whether irradiation prevents psyllid-vectored disease transmission.

Whitney Cranshaw, Colorado State University, Bugwood.org

United States Department of Agriculture

